Summary

Machen, Prüfung und Verwendung von Kalium-Ionen selektive Mikroelektroden im erwachsenen Gehirn Gewebe Scheiben

Published: May 07, 2018
doi:

Summary

Kalium-Ionen zur Membran-Ruhepotential der Zellen und extrazellulären K+ -Konzentration ist ein entscheidender Regulator der zellulären Erregbarkeit. Wir beschreiben, wie zu machen, zu kalibrieren und monopolare K+-selektive Mikroelektroden. Mit Hilfe dieser Elektroden ermöglicht die Messung von elektrisch evozierten K+ Konzentration Dynamik in Erwachsene hippocampal Scheiben.

Abstract

Kalium-Ionen wesentlich dazu beitragen, die Membran-Ruhepotential der Zellen und extrazellulären K+ Konzentration ist daher ein entscheidender Regulator der Erregbarkeit der Zelle. Konzentrationen von extrazellulären K+ beeinflussen die ruhenden Membran potenzielle und zellulären Erregbarkeit durch Verschiebung der Gleichgewichte zwischen geschlossenen, offenen und inaktivierten im Hinblick auf spannungsabhängige Ionenkanäle, die Aktionspotentials zugrunde liegen verändert Initiierung und Leitung. Daher ist es wertvoll, extrazelluläre K+ Dynamik im Gesundheits- und Kranken Staaten direkt zu messen. Hier beschreiben wir, wie zu machen, zu kalibrieren und monopolare K+-selektive Mikroelektroden. Wir ihnen in Erwachsene hippocampal Gehirnscheiben elektrisch evozierten K+ Konzentration Dynamik Messen eingesetzt. Die vernünftige Nutzung von solchen Elektroden ist ein wichtiger Bestandteil der zelluläre und biophysikalische Mechanismen zu bewerten, die extrazelluläre K+ -Konzentrationen im Nervensystem Steuern musste Toolkit.

Introduction

Kalium-Ionen-Konzentrationen sind fest im Gehirn geregelt, und deren Schwankungen üben einen starken Einfluss auf die Membran-Ruhepotential aller Zellen. Im Hinblick auf diese kritische Beiträge ist ein wichtiges Ziel der Biologie, die zellulären und biophysikalischen Mechanismen zu bestimmen, die verwendet werden, um die Konzentration von K+ fest zu regulieren in den extrazellulären Raum in verschiedenen Organen des Körpers1 , 2. eine wichtige Voraussetzung in diesen Studien ist die Fähigkeit, K+ Konzentrationen genau zu messen. Obwohl viele Komponenten, die zur Kalium Homöostase im Gehirn in gesunden und Kranken Staaten beitragen identifizierten3,4,5, wurden wurde weitere Fortschritte aufgrund der speziellen Art der verlangsamte Messung von Kalium vorbereiten Ionen selektive Mikroelektroden. Mikroelektrode Sensoren sind der Goldstandard für die Messung von K+ -Konzentrationen in Vitro, Gewebe und in Vivo.

Neuere Ansätze zur K+ Überwachung sind in der Entwicklung mit optischen Sensoren, aber diese eine biologisch relevante Bereich von K+ -Konzentrationen nicht erkennen oder nicht wurde komplett in biologischen Systemen, überprüft haben obwohl erste Ergebnisse erscheinen Sie vielversprechend6,7,8. Im Vergleich zu optischen Sensoren, sind Mikroelektroden grundsätzlich beschränkt sich auf eine Punktquelle Messung von Ionen, obwohl Elektroden die räumliche Auflösung9verbessert werden könnte. Dieser Artikel konzentriert sich auf die Einzel-barreled Mikroelektrode Sensoren zur Überwachung der K+ Dynamik.

In dieser Arbeit berichten wir detaillierte schrittweise Verfahren zu K+ selektive Mikroelektroden, mit einer Streptomyceten-basierte Kalium Ionophore, die hochselektiven erlaubt (104 Fach K+ + Na Selektivität) K+ Bewegung über Membranen10. Eine natürlich vorkommende Polypeptid, Streptomyceten fungiert als eine K+ durchlässige Pore und erleichtert den Fluss von K+ hinunter die elektrochemischen Gradienten. Wir beschreiben auch, wie die Elektroden zu kalibrieren wie zu speichern und sie verwenden und schließlich zur Messung der K+ Konzentration Dynamik in akuten hippocampal Hirnschnitten von Erwachsenen Mäusen bereitgestellt. Die Verwendung von solchen Elektroden zusammen mit genetisch veränderten Mäusen, die spezifische Ionenkanäle vorgeschlagen, extrazelluläre K+ Dynamik regulieren fehlt zeigen sollte, die zellulären Mechanismen verwendet durch das Nervensystem, die ambient Konzentration von K zu kontrollieren + in das extrazelluläre Milieu.

Protocol

Alle Tierversuche wurden durchgeführt in Übereinstimmung mit den nationalen Institut Health Guide für die Pflege und Verwendung von Labortieren und wurden von der Kanzlers Animal Research Committee an der University of California, Los Angeles genehmigt. Alle Mäuse waren mit Futter und Wasser zur Verfügung Ad Libitum in einer 12 h hell-dunkel-Umgebung untergebracht. Alle Tiere waren gesund mit keine offensichtlichen Verhaltensänderungen, nicht in früheren Studien einbezogen wurden und während der lichtzyk…

Representative Results

Für selektive Messung der extrazellulären K+bereiteten wir IONENSELEKTIVE Mikroelektroden beschichtet mit einer hydrophoben Schicht durch Silanisierung sauber Borosilikatglas Pipetten (Abbildung 1A). Diese Beschichtung ermöglicht die K+ -Ionophore mit Streptomyceten zum Ausruhen an der Spitze der Elektrode und erlauben nur K+ Fluss durch eine schmale Öffnung an der Elektrodenspitze (Abbildung 1 b</stro…

Discussion

Die Methode, die wir hier beschreiben konnten wir K+ Dynamik als Reaktion auf die elektrische Stimulation von Schaffer Sicherheiten in akuten hippocampal Scheiben von Erwachsenen Mäusen zu beurteilen. Unsere Methode der Vorbereitung K+ Ion selektiv Mikroelektroden ist ähnlich wie bei den zuvor beschriebenen Verfahren12,13,14,15. Diese Methode hat jedoch Vorteile gegenüb…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Khakh Lab wurde von NIH MH104069 unterstützt. Der Mody Lab wurde von NIH NS030549 unterstützt. J.C.O. Dank der NIH T32 neuronale Mikroschaltungen Training Grant(NS058280).

Materials

Vibratome DSK Microslicer Zero 1
Mouse: C57BL/6NTac inbred mice Taconic Stock#B6
Microscope Olympus BX51
Electrode puller Sutter P-97
Ag/AgCl ground pellet WPI EP2
pCLAMP10.3 Molecular Devices n/a
Custom microfil 28G tip World precision instruments CMF28G
Tungsten Rod A-M Systems 716000
Bipolar stimulating electrodes FHC MX21XEW(T01)
Stimulus isolator World precision instruments A365
Grass S88 Stimulator Grass Instruments Company S88
Borosilicate glass pipettes World precision instruments 1B150-4
A to D board Digidata 1322A Axon Instruments
Signal Amplifier Multiclamp 700A or 700B Axon Instruments
Headstage CV-7B Cat 1 Axon Instruments
Patch computer Dell n/a
Sodium Chloride Sigma S5886
Potassium Chloride Sigma P3911
HEPES Sigma H3375
Sodium Bicarbonate Sigma S5761
Sodium Phosphate Monobasic Sigma S0751
D-glucose Sigma G7528
Calcium Chloride Sigma 21108
Magnesium Chloride Sigma M8266
valinomycin Sigma V0627-10mg
1,2-dimethyl-3-nitrobenzene Sigma 40870-25ml
Potassium tetrakis (4-chlorophenyl)borate Sigma 60591-100mg
5% dimethyldichlorosilane in heptane Sigma 85126-5ml
TTX Cayman Chemical Company 14964
Hydrochloric acid Sigma H1758-500mL
Sucrose Sigma S9378-5kg
Pipette Micromanipulator Sutter MP-285 / ROE-200 / MPC-200
Objective lens Olympus PlanAPO 10xW

References

  1. McDonough, A. A., Youn, J. H. Potassium homeostasis: The knowns, the unknowns, and the health benefits. Physiol Bethesda Md. 32 (2), 100-111 (2017).
  2. Hille, B. . Ion channels of excitable membranes. , 507 (2001).
  3. Kofuji, P., Ceelen, P., Zahs, K. R., Surbeck, L. W., Lester, H. A., Newman, E. A. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: Phenotypic impact in retina. J Neurosci. 20 (15), 5733-5740 (2000).
  4. Sibille, J., Dao Duc, K., Holcman, D., Rouach, N. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comput Biol. 11 (3), e1004137 (2015).
  5. Tong, X., et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci. 17 (5), 694-703 (2014).
  6. Datta, D., Sarkar, K., Mukherjee, S., Meshik, X., Stroscio, M. A., Dutta, M. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor. Nanotechnology. 28 (32), 325502 (2017).
  7. Bandara, H. M. D., et al. Palladium-Mediated Synthesis of a Near-Infrared Fluorescent K+ Sensor. J Org Chem. 82 (15), 8199-8205 (2017).
  8. Depauw, A., et al. A highly selective potassium sensor for the detection of potassium in living tissues. Chem Weinh Bergstr Ger. 22 (42), 14902-14911 (2016).
  9. Machado, R., et al. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain. Biosensors. 6 (4), (2016).
  10. Rose, M. C., Henkens, R. W. Stability of sodium and potassium complexes of valinomycin. Biochim Biophys Acta BBA – Gen Subj. 372 (2), 426-435 (1974).
  11. Ammann, D., Chao, P., Simon, W. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett. 74 (2), 221-226 (1987).
  12. Amzica, F., Steriade, M. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci. 20 (17), 6648-6665 (2000).
  13. Amzica, F., Steriade, M. The functional significance of K-complexes. Sleep Med Rev. 6 (2), 139-149 (2002).
  14. MacVicar, B. A., Feighan, D., Brown, A., Ransom, B. Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes. Glia. 37 (2), 114-123 (2002).
  15. Chever, O., Djukic, B., McCarthy, K. D., Amzica, F. Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci. 30 (47), 15769-15777 (2010).
  16. Hall, D. G. Ion-selective membrane electrodes: A general limiting treatment of interference effects. J Phys Chem. 100 (17), 7230-7236 (1996).
  17. Haack, N., Durry, S., Kafitz, K. W., Chesler, M., Rose, C. R. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue. J Vis Exp. (103), e53058 (2015).
  18. Larsen, B. R., MacAulay, N. Kir4.1-mediated spatial buffering of K(+): Experimental challenges in determination of its temporal and quantitative contribution to K(+) clearance in the brain. Channels Austin Tex. 8 (6), 544-550 (2014).
  19. Mei, L., et al. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proceedings of the National Academy of Sciences. 115, 4276-4281 (2018).
check_url/kr/57511?article_type=t

Play Video

Cite This Article
Octeau, J. C., Faas, G., Mody, I., Khakh, B. S. Making, Testing, and Using Potassium Ion Selective Microelectrodes in Tissue Slices of Adult Brain. J. Vis. Exp. (135), e57511, doi:10.3791/57511 (2018).

View Video