Summary

Basado en la agarosa tejido imitando fantasmas ópticos para espectroscopia de reflectancia difusa

Published: August 22, 2018
doi:

Summary

Aquí, demostramos cómo fantasmas ópticos imitan tejido basado en la agarosa se hacen y cómo sus propiedades ópticas se determinan usando un sistema óptico convencional con una esfera de Ulbricht.

Abstract

Este protocolo describe cómo hacer fantasmas de tejido mímico basado en la agarosa y demuestra cómo determinar sus propiedades ópticas utilizando un sistema óptico convencional con una esfera de Ulbricht. Sistemas de medición para la adquisición de los espectros de transmitancia total y reflectancia difusa se construyen con una banda ancha fuente de luz blanca, una guía de luz, una lente acromática, una esfera de integración, un sostenedor de la muestra, una sonda de fibra óptica y un varios canales espectrómetro. Se construye un molde acrílico compuesto por dos piezas rectangulares de acrílico y una pieza de acrílico en forma de U para crear un fantasma epidérmico y un fantasma cutáneo con sangre entera. La aplicación de una solución de sodio ditionito (Na2S2O4) al fantasma cutánea permite al investigador deoxygenate hemoglobina en glóbulos rojos distribuidos en el fantasma cutáneo. El inverso de simulación Monte Carlo con los espectros de transmitancia total medidos por un espectrómetro con una esfera de Ulbricht y reflectancia difusa se realiza para determinar la absorción coeficiente espectro μa(λ) y la reduce la dispersión coeficiente espectro μs‘ (λ) de cada capa fantasma. Un fantasma de dos capas mímico la reflectancia difusa de los tejidos de la piel humana también es demostrado por llenar para arriba el fantasma epidérmico en el fantasma cutáneo.

Introduction

Ópticos fantasmas son objetos imitando las propiedades ópticas de los tejidos biológicos y han sido ampliamente utilizados en el campo de la óptica biomédica. Están diseñados para que las propiedades ópticas, tales como dispersión de la luz y coeficientes de absorción, coinciden con los de los tejidos humanos y animales vivos. Fantasmas ópticos se utilizan generalmente para los siguientes propósitos: simulando transporte ligero en tejidos biológicos, un diseño de sistema óptico de reciente desarrollo, evaluación de la calidad y rendimiento de los sistemas existentes, comparando el desempeño de calibración entre los sistemas y validar la capacidad de los métodos ópticos para cuantificar propiedades ópticas1,2,3,4,5. Por lo tanto, sustancias de fácil de conseguir, un proceso de fabricación simple, una alta reproducibilidad y una estabilidad óptica se requieren para hacer fantasmas ópticos.

Varios tipos de fantasmas ópticos con diferentes materiales base como suspensión acuosa6, gelatina gel agarose gel8,9,10,7, gel de poliacrilamida11, resina12, 13,14,15,16y cuarto temperatura de vulcanización silicona17 se han divulgado en la literatura anterior. Se ha divulgado que los geles basados en gelatina y alginato son útiles para ópticos fantasmas con estructuras heterogéneas18. Fantasmas de alginato tienen una conveniente estabilidad mecánica y termal para evaluar efectos de fototérmica como estudios de ablación de láser y basados en láser hipertermia estudios18. Geles de agarosa tienen la capacidad para fabricar estructuras heterogéneas y sus propiedades mecánicas y físicas son estables durante un largo tiempo18. Geles de agarosa de alta pureza con una turbiedad muy baja y una débil absorción óptica. Por lo tanto, las propiedades ópticas de los fantasmas de agarosa fácilmente podrían ser diseñados con la luz adecuada dispersión y absorción de los agentes. Recientemente, se han divulgado como interesantes materiales fantasmas de copolímeros de bloque estireno-etileno-butileno-estireno (SEBS)19 y cloruro de polivinilo (PVC) geles20 ópticas y técnicas fotoacústica.

Polímero microesferas7,12,21,22, polvo de óxido de titanio1y lípidos emulsiones23,24,25,26 como la leche y lípidos emulsión se utilizan como agentes de dispersión de la luz, mientras que se utilizan como absorbentes de luz tinta negra27,28 y tintes molecular29,30 . Reflectancia difusa de los espectros de la mayoría de los órganos vivos están dominados por la absorción de oxigenada y desoxigenada de la hemoglobina de los glóbulos rojos. Por lo tanto, hemoglobina soluciones31,32 y sangre entera8,9,10,33,36 a menudo se utilizan como absorbentes de luz en el fantasmas de imágenes multiespectrales y espectroscopia de reflectancia difusa.

El método descrito en este artículo se utiliza para crear un fantasma óptico mímico el transporte ligero en tejidos biológicos y caracterizar sus propiedades ópticas. Por ejemplo, se demuestra una dos capas ópticas fantasma mímico propiedades ópticas del tejido de la piel humana. Las ventajas de este método sobre técnicas alternativas son la capacidad para representar los espectros de reflectancia difusa de tejidos biológicos de vida en la región de longitud de onda del infrarrojo cercano, así como la sencillez a disposición, usar fácilmente visible materiales e instrumentos ópticos convencionales. Por lo tanto, los fantasmas de la ópticos de este método será útiles para el desarrollo de métodos ópticos basados en la espectroscopia de reflectancia difusa y las imágenes multiespectrales.

Protocol

1. construcción de un sistema convencional de difusa reflectancia y transmitancia Total espectroscópico Nota: La construcción de los sistemas de medición para los espectros de transmitancia total utilizando una fuente de luz blanca banda ancha, un guía de luz, una lente acromática, una esfera de integración, un sostenedor de la muestra, una fibra óptica y un espectrómetro multicanal y reflectancia difusa. El papel de la trampa de luz es quitar el componente de reflexión especular del e…

Representative Results

La figura 3 muestra los espectros estimados representante del coeficiente de reducción de la dispersión y el coeficiente de absorción para el fantasma epidérmica y dérmica fantasma. Los resultados que se muestran en la figura 3 son los promedios de diez mediciones de espectros de reflectancia y transmitancia. La reducida dispersión coeficiente μs’ tiene un espectro de dispersión amplia, exhibi…

Discussion

El paso más crítico en este protocolo es el control de la temperatura del material base. La temperatura para mantener la materia prima entre 58 y 60 ° C. Si la temperatura es superior a 70 ° C, se produce una desnaturalización de la emulsión de lípidos y de la sangre. Como consecuencia, las propiedades ópticas del fantasma se deteriorarán. Si la temperatura es inferior a 40 ° C, el material base va ser ununiformly gelificado y, así, los agentes de dispersión y absorción de luz a ser heterogénea en el fantas…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Parte de este trabajo fue apoyado por una subvenciones para Scientific Research (C) de la sociedad japonesa para la promoción de la ciencia (25350520, 22500401, 15 K 06105) y el U.S. ARMY ITC-PAC investigación y desarrollo de proyecto (FA5209-15-P-0175, FA5209-16-P-0132).

Materials

150-W halogen-lamp light source Hayashi Watch Works Co., Ltd, Tokyo, Japan LA-150SAE
Light guide Hayashi Watch Works Co., Ltd, Tokyo, Japan LGC1-5L1000
Integrating Sphere Labsphere Incorporated, North Sutton, NH, USA RT-060-SF
Port adapter Labsphere Incorporated, North Sutton, NH, USA PA-050-SMA-SF
Light trap Labsphere Incorporated, North Sutton, NH, USA LTRP-100-C
Spectralon white standard with 99% diffuse reflectance Labsphere Incorporated, North Sutton, NH, USA SRS-99-020
Optical fiber Ocean Optics Inc., Dunedin, Florida, USA P400-2-VIS-NIR
Miniature Fiber Optic Spectrometer Ocean Optics Inc., Dunedin, Florida, USA USB2000
Achromatic lens Chuo Precision Industrial Co.,Ltd, Tokyo, Japan ACL-50-75M
Intralipid Fresenius Kabi AB, Uppsala, Sweden Intralipid 10%
Coffee
(Blendy Mocha Blend Regular Coffee)
Ajinomoto AGF, Inc. Tokyo, Japan Unavailable
Whole blood Nippon Bio-Test Laboratories Inc. Saitama, Japan 0103-2
Agarose Nippon Genetics Co., Ltd, Tokyo, Japan NE-AG02
Cooking heater TOSHIBA CORPORATION Tokyo, Japan HP-103K

References

  1. Pogue, B. W., Patterson, M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics. 11 (4), 041102 (2006).
  2. Cohen, G. Contrast–detail–dose analysis of six different computed tomographic scanners. Journal of Computer Assisted Tomography. 3 (2), 197-203 (1979).
  3. Seltzer, S. E., Swensson, R. G., Judy, P. F., Nawfel, R. D. Size discrimination in computed tomographic images. Effects of feature contrast and display window. Investigative Radiology. 23 (6), 455-462 (1988).
  4. Pifferi, A., et al. Performance assessment of photon migration instruments: the MEDPHOT protocol. Applied Optics. 44 (11), 2104-2114 (2005).
  5. Linford, J., Shalev, S., Bews, J., Brown, R., Schipper, H. Development of a tissue-equivalent phantom for diaphanography. Medical Physics. 13 (6), 869-875 (1986).
  6. Durkin, A. J., Jaikumar, S., Richardskortum, R. Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples. Applied Spectroscopy. 47 (12), 2114-2121 (1993).
  7. Nishidate, I., Aizu, Y., Mishina, H. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. Journal of Biomedical Optics. 9 (4), 700-710 (2004).
  8. Nishidate, I., Maeda, T., Aizu, Y., Niizeki, K. Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images. Journal of Biomedical Optics. 12 (5), 054006 (2007).
  9. Nishidate, I., et al. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera. Journal of Biomedical Optics. 16 (8), 086012 (2011).
  10. Bharathiraja, S., et al. Multi-modality tissue-mimicking phantom for thermal therapy. Physics in Medicine & Biology. 49 (13), 2767-2778 (2004).
  11. Firbank, M., Oda, M., Delpy, D. T. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging. Physics in Medicine & Biology. 40 (5), 955-961 (1995).
  12. Hebden, J. C., Hall, D. J., Firbank, M., Delpy, D. T. Timeresolved optical imaging of a solid tissue-equivalent phantom. Applied Optics. 34 (34), 8038-8047 (1995).
  13. Firbank, M., Delpy, D. T. A phantom for the testing and calibration of near-infrared spectrometers. Physics in Medicine & Biology. 39 (9), 1509-1513 (1994).
  14. Sukowski, U., Schubert, F., Grosenick, D., Rinneberg, H. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Physics in Medicine & Biology. 41, 1823-1844 (1996).
  15. Beaudry, S., P, Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media. Applied Optics. 38 (19), 4247-4251 (1999).
  16. Lualdi, M., Colombo, A., Farina, B., Tomatis, S., Marchesini, R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers in Surgery and Medicine. 28 (3), 237-243 (2001).
  17. Dabbagh, A., Abdullah, B. J., Ramasindarum, C., Abu Kasim, N. H. Tissue-mimicking gel phantoms for thermal therapy studies. Ultrasonic Imaging. 36 (4), 291-316 (2014).
  18. Cabrelli, L. C., Pelissari, P. I., Deana, A. M., Carneiro, A. A., Pavan, T. Z. Stable phantom materials for ultrasound and optical imaging. Physics in Medicine & Biology. 62 (2), 432-447 (2017).
  19. Vogt, W. C., Jia, C., Wear, K. A., Garra, B. S., Pfefer, T. J. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. Journal of Biomedical Optics. 21 (10), 101405 (2016).
  20. Bays, R., et al. Three-dimensional optical phantom and its application in photodynamic therapy. Lasers in Surgery and Medicine. 21 (3), 227-234 (1997).
  21. Ramella-Roman, J. C., Bargo, P. R., Prahl, S. A., Jacques, S. L. Evaluation of spherical particle sizes with an asymmetric illumination microscope. IEEE Journal of Selected Topics in Quantum Electronics. 9 (2), 301-306 (2003).
  22. Waterworth, M. D., Tarte, B. J., Joblin, A. J., van Doorn, T., Niesler, H. E. Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging. Australasian Physical and Engineering Science in Medicine. 18 (1), 39-44 (1995).
  23. Moes, C. J., van Gemert, M. J., Star, W. M., Marijnissen, J. P., Prahl, S. A. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm. Applied Optics. 28 (12), 2292-2296 (1989).
  24. van Staveren, H. J., Moes, C. J., van Marie, J., Prahl, S. A., van Gemert, M. J. Light scattering in intralipid-10% in the wavelength range of 400-1100 nm. Applied Optics. 30 (31), 4507-4514 (1991).
  25. Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M., Vangemert, M. J. C. Optical-properties of intralipid – a phantom medium for light-propagation studies. Lasers in Surgery and Medicine. 12 (5), 510-519 (1992).
  26. Madsen, S. J., Patterson, M. S., Wilson, B. C. The use of India ink as an optical absorber in tissue-simulating phantoms. Physics in Medicine & Biology. 37, 985-993 (1992).
  27. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G. A solid tissue phantom for photon migration studies. Physics in Medicine & Biology. 42 (10), 1971-1979 (1997).
  28. Ebert, B., et al. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments. Journal of Biomedical Optics. 6 (2), 134-140 (2001).
  29. Sukowski, U., Schubert, F., Grosenick, D., Rinneberg, H. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Physics in Medicine & Biology. 41, 1823-1844 (1996).
  30. Yoshida, K., Nishidate, I., Ishizuka, T., Kawauchi, S., Sato, S., Sato, M. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera. Journal of Biomedical Optics. 20 (5), 051026 (2015).
  31. Lo, J. Y., et al. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes. Optics Express. 17 (3), 1372-1384 (2009).
  32. Bednov, A., Ulyanov, S., Cheung, C., Yodh, A. G. Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin. Journal of Biomedical Optics. 9 (2), 347-352 (2004).
  33. Hull, E. L., Nichols, M. G., Foster, T. H. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Physics in Medicine & Biology. 43 (11), 3381-3404 (1998).
  34. Kienle, A., Patterson, M. S., Ott, L., Steiner, R. Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood. Applied Optics. 35 (19), 3404-3412 (1996).
  35. Srinivasan, S., Pogue, B. W., Jiang, S., Dehghani, H., Paulsen, K. D. Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction. Applied Optics. 44 (10), 1858-1869 (2004).
  36. . Glossary. Dark Noise Available from: https://oceanoptics.com/glossary/#d (2018)
  37. Friebel, M., Roggan, A., Müller, G., Meinke, M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. Journal of Biomedical Optics. 11 (3), 34021 (2006).
  38. Nishidate, I., Aizu, Y., Mishina, H. Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near- infrared (VIS-NIR) reflectance spectra. Optical Review. 10 (5), 427-435 (2003).
  39. Friebel, M., Helfmann, J., Netz, U., Meinke, M. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm. Journal of Biomedical Optics. 14 (3), 034001 (2009).
  40. Jacques, S. L., Glickman, R. D., Schwartz, J. A. Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. SPIE Conference Proceedings. 2681, 468-477 (1996).
  41. Park, J., Ha, M., Yu, M., Jung, B. Fabrication of various optical tissue phantoms by the spin-coating method. Journal of Biomedical Optics. 21 (6), 065008 (2016).
  42. . Skin Optics Available from: https://omlc.org/news/jan98/skinoptics.html (1998)
  43. Prahl, S. A., van Gemert, M. J. C., Welch, A. J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics. 32 (4), 559-568 (1993).
  44. Hale, G. M., Querry, M. R. Optical constants of water in the 200-nm to 200-um wavelength region. Applied Optics. 12 (3), 555-563 (1973).

Play Video

Cite This Article
Mustari, A., Nishidate, I., Wares, M. A., Maeda, T., Kawauchi, S., Sato, S., Sato, M., Aizu, Y. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. J. Vis. Exp. (138), e57578, doi:10.3791/57578 (2018).

View Video