Summary

流式细胞仪测定缺氧/复氧后心肌细胞线粒体膜电位的实验研究

Published: July 13, 2018
doi:

Summary

在这里, 我们提出一个协议, 使用 JC-1 染料评估细胞线粒体膜电位后, 暴露在缺氧/复氧与或没有保护剂。

Abstract

及时有效地再灌注闭塞性冠状动脉是降低 st 段抬高心肌梗死患者心肌梗死大小的最佳策略。然而, 再灌注本身可能导致进一步的心肌细胞死亡, 这一现象被称为再灌注损伤。线粒体通透性过渡孔隙 (mPTP) 的开放, 随着线粒体膜电位 (基质) 的减少, 或线粒体的退极化, 被普遍认为是再灌注损伤的最后一步, 负责线粒体和心肌细胞死亡。JC-1 是一种脂溶性阳离子染料, 在线粒体中积累取决于基质的价值。基质金属蛋白酶越高, 线粒体中的 JC-1 积累越多。线粒体中 JC-1 含量的增加可以通过荧光发射从绿色 (~ 530 nm) 到红色 (~ 590 nm) 来反映出来。因此, 降低红/绿荧光强度比可以表明线粒体的退极化。在这里, 我们利用 JC-1 测量基质金属蛋白酶, 或在缺氧/复氧后的人心肌细胞中 mPTP 的开放, 通过流式细胞术检测。

Introduction

冠心病是全世界死亡的主要原因。ST 段抬高心肌梗死患者减少缺血性损伤和限制梗死大小的选择是通过经皮冠状动脉介入治疗 (PCI) 的及时有效的心肌再灌注1, 2。然而, 再灌注导致额外的损伤, 可能占到最后梗塞大小的30% 的3。普遍认为线粒体通透性过渡孔隙 (mPTP) 不仅是缺血/再灌注过程中线粒体损伤和细胞死亡的中枢, 而且也是心肌梗死信号4的收敛目标。,5. 随着 mPTP 的开放将导致内线粒体膜电位的退极化 (基质金属蛋白酶)4, 我们检测到 mPTP 开放使用 5,5′, 6,6′四氯化碳 1,1′, 3,3′-四乙基 imidacarbocyanineiodide (JC-1) 化验。

JC-1 法是一种定性和定量的 cytofluorimetric 方法, 通过对单个线粒体6级的基质细胞进行分析, 进一步验证了它的有效性。JC-1 作为一种聚集形式存在, 在线粒体基质中产生红色到橙色的辐射 (590 17.5 nm);随着基质的丧失, JC-1 被转化为单体形式, 产生绿色荧光, 发射量为 530-15 nm。因此, 红/绿荧光强度比的降低可以表明在缺血/再灌注 (I/R) 条件下基质金属蛋白酶的减少。

除了 JC-1, 还研究了膜渗透亲脂阳离子, 如罗丹明123和 3,3′-dihexyloxadicarbocyanine 碘 [DiOC6 (3)]。然而, 与这两种探头相比, JC-1 更能可靠地分析基质金属蛋白酶。罗丹明123具有相对较差的灵敏度 (特别是在淬火方式7,8) 和较差的特异性。在罗丹明123的转变有时是如此之小, 研究人员或设备很难观察/检测。此外, 在单个细胞中, 罗丹明123有不同的线粒体结合点, 因此它可能有不同的荧光排放量9。DiOC6 (3) 不推荐用于检测基质金属蛋白酶, 因为它对等离子体膜10的退极化反应灵敏。

因此, 在这里, 我们使用 JC-1 的方法来评估在接触到缺氧/复氧或没有保护剂的情况下母国措施的基质。

Protocol

1. 试剂和溶液的制备 根据制造商的指示, 加入25毫升肌细胞生长培养基补充剂, 以500毫升的细胞生长培养基, 制备人心肌肌 (母国) 全培养基。在使用前贮存在4°c 和温暖到37°c。 将 txl-特格尔超细粉溶于血清/葡萄糖 Dulbecco 修饰鹰的培养基 (DMEM) 中, 制备通心络 (txl-特格尔) 溶液, 并通过添加 txl-特格尔将µg 浓度调整为 400 DMEM/毫升 (详情见11)。在使用前贮存在4°c 和温暖…

Representative Results

在进行 JC-1 试验以评估基质金属蛋白酶的变化之前, 强烈建议进行实验以确认研究人员成功确定的条件。如流式细胞术结果 (图 2) 所示, 与正常组相比, 缺氧/复氧 (H/r) 显著诱导了母国措施 (蛋白 V +/PI±) 的凋亡, 表明我们建立了一个基于细胞的 I/R (45.00 2.13% vs) 模型。11.50, 0.18% 在正常组, p < 0.05)。通心络是一种具有心肌作用的中药, 在 h/r 组 ( p …

Discussion

在这里, 我们提出一个协议, 使用 JC-1 染料来评估细胞的基质干细胞暴露后, 通过 JC-1 检测发现, 细胞的基质干细胞是独立的因素, 如线粒体大小, 形状和密度可能影响单组分荧光信号14。因此, JC-1 化验结果比较可靠。同时, 对 JC-1 的检测具有很方便、省时的性能。这种检测对材料和试剂的要求很低, 一般情况下, 从细胞分离到基质金属蛋白酶的测量, 其染色需要少于1.5 小时。

<p cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由中国国家重点研究开发项目 (2017YFC1700503)、全国基础研究计划 (973 计划)、中国国家自然科学基金 (81370223 号) 资助。81573957号), 以及北京协和医学院研究生创新研究基金会 (2016-1002-01-02)。

Materials

Mitochondrial membrane potential assay kit with JC-1 Beyodtime, China C2006 In the kit there are JC-1 stock solution (200×), stock staining buffer (5×) and CCCP(10mM)
Tongxinluo ultrafine powder Shijiazhuang Yiling Pharmaceutical Co., China 071201
Annexin V-FITC/PI Kit Becton-Dickinson, USA 556547
DMEM Life Technologies, Grand Island Biological Company, USA 11966-025
Human cardiac myocyte Promocell, Germany C-12810
Myocyte Growth Medium
(SupplementMix)
Promocell, Germany C-39275
Myocyte Growth Medium (Ready-to-use) Promocell, Germany C-22070 used with Myocyte Growth Medium SupplementMix
GENbox BioMérieux, Marcy l’Etoile, France 96127 2.5L
Catalyst (AnaeroPack) MITSUBISHI GAS CHEMICAL COMPANY, INC. , Japan  C-1
Anaerobic indicator BioMérieux, Marcy l’Etoile, France 96118
Flow cytometer Becton-Dickinson, USA FACSAria 2
BD FACSDiva Software Becton-Dickinson, USA Version8.0.1
Sample tube Corning science, USA 352054 12*75mm
PBS Hyclone, USA SH30256.01

References

  1. Anderson, J. L., Morrow, D. A. Acute Myocardial Infarction. New England Journal of Medicine. 376 (21), 2053-2064 (2017).
  2. Ibanez, B., et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. 39 (2), 119-177 (2017).
  3. Yellon, D. M., Hausenloy, D. J. Myocardial reperfusion injury. New England Journal of Medicine. 357 (11), 1121-1135 (2007).
  4. Ong, S. B., Samangouei, P., Kalkhoran, S. B., Hausenloy, D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology. 78, 23-34 (2015).
  5. Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circulation Research. 116 (4), 674-699 (2015).
  6. Cossarizza, A., Ceccarelli, D., Masini, A. Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Experimental Cell Research. 222 (1), 84-94 (1996).
  7. Ward, M. W., Rego, A. C., Frenguelli, B. G., Nicholls, D. G. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. Journal of Neuroscience. 20 (19), 7208-7219 (2000).
  8. Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B., Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 50 (2), 98-115 (2011).
  9. Cossarizza, A., Salvioli, S. Flow cytometric analysis of mitochondrial membrane potential using JC-1. Current Protocols in Cytometry. , 14 (2001).
  10. Salvioli, S., Ardizzoni, A., Franceschi, C., Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Letters. 411 (1), 77-82 (1997).
  11. Chen, G. H., et al. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1. Frontiers in Pharmacology. 8, 775 (2017).
  12. Cui, H., et al. Induction of autophagy by Tongxinluo through the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury. Journal of Cardiovascular Pharmacology. 64 (2), 180-190 (2014).
  13. Chen, J., et al. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells. 26 (1), 135-145 (2008).
  14. Chazotte, B. Labeling mitochondria with JC-1. Cold Spring Harbor Protocols. (9), (2011).
  15. Pravdic, D., et al. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein Kinase C-epsilon-mediated pathway. Anesthesiology. 111 (2), 267-274 (2009).
  16. Wu, Y., et al. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway. Journal of Diabetes Research. 2017, 8208065 (2017).
  17. Qiu, Y., et al. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochemical and Biophysical Research Communications. 448 (1), 15-21 (2014).
  18. Zhen, Y. F., et al. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. Journal of Cell Physiology. 229 (10), 1475-1483 (2014).
  19. Nazarewicz, R. R., Dikalova, A. E., Bikineyeva, A., Dikalov, S. I. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. American Journal of Physiology-Heart and Circulatory Physiology. 305 (8), H1131-H1140 (2013).
  20. Wang, T., Zhang, Z. X., Xu, Y. J. Effect of mitochondrial KATP channel on voltage-gated K+ channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells. Chinese Medical Journal (Engl). 118 (1), 12-19 (2005).
  21. Kuter, N., Aysit-Altuncu, N., Ozturk, G., Ozek, E. The Neuroprotective Effects of Hypothermia on Bilirubin-Induced Neurotoxicity in vitro. Neonatology. 113 (4), 360-365 (2018).
  22. Zheng, Y. Y., Wang, M., Shu, X. B., Zheng, P. Y., Ji, G. Autophagy activation by Jiang Zhi Granule protects against metabolic stress-induced hepatocyte injury. World Journal of Gastroenterology. 24 (9), 992-1003 (2018).
  23. El Gamal, H., Eid, A. H., Munusamy, S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Research International. 2017, 5903105 (2017).
  24. Renault, T. T., Luna-Vargas, M. P., Chipuk, J. E. Mouse Liver Mitochondria Isolation, Size Fractionation, and Real-time MOMP Measurement. Bio-Protocols. 6 (15), (2016).
check_url/kr/57725?article_type=t

Play Video

Cite This Article
Chen, G., Yang, Y., Xu, C., Gao, S. A Flow Cytometry-based Assay for Measuring Mitochondrial Membrane Potential in Cardiac Myocytes After Hypoxia/Reoxygenation. J. Vis. Exp. (137), e57725, doi:10.3791/57725 (2018).

View Video