Summary

钢筋形态参数评价方法的适用性分析

Published: November 01, 2018
doi:

Summary

本文采用不同的方法测量钢筋的几何形状和腐蚀量: 质量损失、卡钳、排水测量、三维扫描和 x 射线显微计算机断层扫描 (xct)。

Abstract

腐蚀钢筋长度的不规则和不均匀残余截面极大地改变了其机械性能, 极大地主导了现有混凝土结构的安全性和性能。因此, 正确测量结构中钢筋的几何形状和腐蚀量, 以评估结构的剩余承载力和使用寿命, 是非常重要的。本文介绍并比较了五种不同的测量钢筋的几何形状和腐蚀量的方法。在本协议中, 单根500毫米长、直径14毫米的钢筋是受到加速腐蚀的试样。在质量损失测量、vernier 卡钳、排水测量、三维扫描和 x 射线微计算机断层扫描 (xct) 之前和之后, 对其形态和腐蚀量进行了仔细测量。然后对这些不同方法的适用性和适用性进行了评价。结果表明, vernier 卡钳是测量无腐蚀棒形态的最佳选择, 而三维扫描是最适合于定量测量腐蚀棒的形态的最佳选择。

Introduction

钢筋腐蚀是混凝土结构恶化的主要原因之一, 是混凝土碳化和氯部侵入造成的。在混凝土碳化中, 腐蚀倾向于广义;而在氯化物入侵, 它变得更加本地化1,2。不管是什么原因, 腐蚀会使腐蚀产品的径向膨胀导致混凝土盖发生腐蚀, 使钢筋与其周围混凝土之间的粘结变差, 穿透钢筋表面, 并减少钢筋的横截面面积相当3,4

由于结构混凝土的非均匀性和使用环境的变化, 钢筋的腐蚀在其表面和长度上随机发生, 具有很大的不确定性。与混凝土碳化引起的广义均匀腐蚀相反, 氯离子入侵引起的点蚀引起了攻击的渗透。此外, 它还会导致腐蚀杆的残余部分在棒材表面和长度之间有很大的差异。因此, 棒材强度和杆延性降低。已经进行了广泛的研究, 以研究腐蚀对钢筋的机械性能的影响 5,6,7, 8,9,10 11,12,13,14,15。然而, 对钢筋形态参数和腐蚀特性的测量方法关注较少。

一些研究人员用质量损失来评估钢筋5、101114 的腐蚀程度。但是, 此方法只能用于确定残段的平均值, 不能测量截面沿长度的分布。朱和佛朗哥改进了这种方法, 将一根钢筋切割成一系列短段, 并称重每个段, 以确定剩余截面沿其长度13,14的区域的变化。然而, 这种方法在切割过程中造成了钢材料的额外损失, 不能准确地接触到腐蚀钢筋的最小残余部分, 这决定了其承载能力。游标卡尺还用于测量 14,15钢筋的几何参数。然而, 腐蚀杆的残余截面是非常不规则的, 并且在被测量的和实际的截面尺寸之间总是有明显的偏差被腐蚀的酒吧。根据阿基米德原理, 克拉克等人采用排水法测量腐蚀杆沿长度的残余部分, 但在这种情况下, 在没有明显精度的情况下, 对钢筋位移进行了人工控制, 但没有明显的精度11。通过使用电动机自动控制钢筋的位移, 更准确地测量结果, 改进了这种排水方法.最后, 在过去几年中, 随着三维扫描技术的发展, 该方法被用来测量钢筋几何尺寸 17,18,19, 20.通过三维扫描, 可以精确地获得钢筋的直径、残余面积、质心、偏心、转动惯量和腐蚀渗透。尽管研究人员在不同的实验环境中使用了这些方法, 但在精度、适用性和适用性方面对这些方法没有进行比较和评价。

腐蚀, 特别是点蚀, 与广义腐蚀相比, 不仅改变了腐蚀钢筋的力学性能, 而且降低了混凝土结构的剩余承载力和使用寿命。为了更合理地评估钢筋的力学性能, 必须更准确地测量腐蚀钢筋的形态参数, 以确定钢筋长度腐蚀的空间变异性。这将有助于更准确地评估受腐蚀损坏的钢筋混凝土 (rc) 结构的安全性和可靠性212223242526 ,27,28,29

该协议比较了五种讨论的测量钢筋几何形状和腐蚀量的方法。一个单, 500 毫米长, 14 毫米直径, 平圆棒被用作样品, 并在实验室中受到加速腐蚀。在使用每种方法之前和之后, 仔细测量其形态和腐蚀程度, 包括质量损失、vernier 卡钳、排水测量、三维扫描和 x 射线微型计算机断层扫描 (xct)。最后, 对两者的适用性和适用性进行了评价。

需要注意的是, 嵌入混凝土中的带肋钢筋, 而不是暴露在空气中的普通钢筋, 通常用于混凝土结构, 并受到腐蚀。对于带肋的酒吧, vernier 卡钳可能不那么容易应用。由于这些钢筋在混凝土中腐蚀, 与暴露在空气中的钢筋相比, 它们的表面渗透更加不规则。然而, 该协议是为了在同一柱上对不同测量方法的分析的适用性而设计的;因此, 它采用赤裸的平条作为样品, 以消除肋和混凝土非均匀性对形态参数测量的影响。今后还可以进一步研究用其他方法测量腐蚀的肋钢筋。

Protocol

1. 样品和制造工艺的测试 获得500毫米长、直径14毫米的普通钢筋 (q235 级), 用于测试试件的制造。 用细砂纸擦亮棒材的表面, 以去除表面的磨机鳞片。 使用切割机从左侧切割条形图30毫米和470毫米, 如图 1所示。 使用数字电子秤测量三个条形图的重量。 使用步骤2中描述的五种方法测量三个试件的直径, 并记录无腐蚀棒材试件?…

Representative Results

图 6显示了500毫米长的无腐蚀棒材试样在使用 vernier 卡钳测量长度的每个截面的角度为0°、45°、90°和135°的直径。然后将条形切割成三个部分, 如图 1所示。 图 7显示了非腐蚀棒材试样沿长度的横截面面积, 分别使用四种和五种方法测量, 分别用于440毫米长的中?…

Discussion

图 6a6A显示, 未腐蚀棒材试样的测量直径在其长度上没有显著变化。沿杆长测量的直径之间的最大差异仅为 0.11 mm 左右, 最大偏差为0.7%。这表明, 使用游标卡尺可以很好地评估无腐蚀条形图的几何形状。但是, 在同一截面的不同角度测量的直径之间的差异是一致的, 而且差别很大。对于给定的棒材试样, 最大直径为 14.62 mm 和 14.62 mm, 角度为45°和 135°, 最大偏差为4%…

Disclosures

The authors have nothing to disclose.

Acknowledgements

深圳大学作者非常感谢国家自然科学基金 (51520105012 号和51278303号) 和广东省教育部 (重点) 项目的资助。(编号 2014kzdxm051), 他们还感谢深圳大学土木工程学院广东省海洋土木工程耐久性重点实验室提供的检测设施和设备。

Materials

Supplies
Plastic ruler Deli Group Co.,Ltd. No.6240
white paint pen SINO PATH Enterprises.,Ltd. SP-110
Tube with Branch Customized-made
Measurement cylinder Beijing Huake Bomex Glass Co., Ltd.
500mL Beaker Beijing Huake Bomex Glass Co. , Ltd. CP-201
sandpaper Shanghai Noon Decoration Material Co., Ltd. P04
white developer SHANGHAI XINMEIDA FLAW DETECTION MATERIAL CO., LTD. FA-5
Reagents
epoxy resin adhesive Hunan Baxiongdi New Material Co., Ltd. DY·E·44
epoxy hardener Hunan Baxiongdi New Material Co., Ltd. DY·EP
HCl Dongguan Dongjiang Chemical Reagent Co., Ltd. AR-2500ml
saturated lime water Xilong Chemical Co., Ltd. AR-500g
Equipment
Digital electronic scale Kaifeng Group Co., Ltd. Model JCS-0040
Digital vernier caliper Shanghai Measuring & Cutting Tool Works Co., Ltd. Model ST-089-229-090
Cutting machine Robert Bosch GmbH TCO2000
3D reconstructed X-ray microscope XRADIA Model MICROXCT-400
3D scanner HOLON Three-dimensional Technology(Shenzhen) Co.,Ltd. Model HL-3DX+
Electromechanical Universal Testing Machine MTS SYSTEMS (China) Co., Ltd. Model C64.305

References

  1. Cavaco, E. S., Bastos, A., Santos, F. A. D. Effects of corrosion on the behaviour of precast concrete floor systems. Construction & Building Materials. 145, (2017).
  2. Cavaco, E. S., Neves, L. A. C., Casas, J. R. On the robustness to corrosion in the life cycle assessment of an existing reinforced concrete bridge. Structure and Infrastructure Engineering. 14 (2), 137-150 (2017).
  3. Muthulingam, S., Rao, B. N. Non-uniform corrosion states of rebar in concrete under chloride environment. Corrosion Science. 93, 267-282 (2015).
  4. Apostolopoulos, C. A., Papadakis, V. G. Consequences of steel corrosion on the ductility properties of reinforcement bar. Construction & Building Materials. 22 (12), 2316-2324 (2008).
  5. Fernandez, I., Bairán, J. M., Marí, A. R. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ – ε behavior. Construction & Building Materials. 101, 772-783 (2015).
  6. Papadopoulos, M. P., Apostolopoulos, C. A., Zervaki, A. D., Haidemenopoulos, G. N. Corrosion of exposed rebars, associated mechanical degradation and correlation with accelerated corrosion tests. Construction & Building Materials. 25 (8), 3367-3374 (2011).
  7. Castro, H., Rodriguez, C., Belzunce, F. J., Canteli, A. F. Mechanical properties and corrosion behaviour of stainless steel reinforcing bars. Journal of Materials Processing Technology. 143 (1), 134-137 (2003).
  8. Almusallam, A. A. Effect of degree of corrosion on the properties of reinforcing steel bars. Construction & Building Materials. 15 (8), 361-368 (2001).
  9. Papadopoulos, M. P., Apostolopoulos, C. A., Alexopoulos, N. D., Pantelakis, S. G. Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars. Materials & Design. 28 (8), 2318-2328 (2007).
  10. Zhang, W., Song, X., Gu, X., Li, S. Tensile and fatigue behavior of corroded rebars. Construction & Building Materials. 34 (5), 409-417 (2012).
  11. Clark, L. A., Chan, A. H. C., Du, Y. G. Residual capacity of corroded reinforcing bars. Magazine of Concrete Research. 57 (3), 135-147 (2005).
  12. Chan, A. H. C., Clark, L. A., Du, Y. G. Effect of corrosion on ductility of reinforcing bars. Magazine of Concrete Research. 57 (7), 407-419 (2005).
  13. Zhu, W., François, R. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam. Construction & Building Materials. 51 (2), 461-472 (2014).
  14. François, R., Khan, I., Dang, V. H. Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Materials & Structures. 46 (6), 899-910 (2013).
  15. Torres-Acosta, A. A., Castro-Borges, P. Corrosion-Induced Cracking of Concrete Elements Exposed to a Natural Marine Environment for Five Years. Corrosion. 69 (11), 1122-1131 (2013).
  16. Li, D., Wei, R., Du, Y., Guan, X., Zhou, M. Measurement methods of geometrical parameters and amount of corrosion of steel bar. Construction & Building Materials. 154, 921-927 (2017).
  17. Kashani, M. M., Crewe, A. J., Alexander, N. A. Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. Corrosion Science. 73 (13), 208-221 (2013).
  18. Tang, F., Lin, Z., Chen, G., Yi, W. Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion. Construction & Building Materials. 70 (2), 104-117 (2014).
  19. Zhang, W., Zhou, B., Gu, X., Dai, H. Probability Distribution Model for Cross-Sectional Area of Corroded Reinforcing Steel Bars. Journal of Materials in Civil Engineering. 26 (5), 822-832 (2013).
  20. Wang, X. G., Zhang, W. P., Gu, X. L., Dai, H. C. Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables. Construction & Building Materials. 38, 846-853 (2013).
  21. Stewart, M. G., Al-Harthy, A. Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis. Reliability Engineering & System Safety. 93 (3), 373-382 (2008).
  22. Darmawan, M. S., Stewart, M. G. Effect of Spatially Variable Pitting Corrosion on Structural Reliability of Prestressed Concrete Bridge Girders. Australian Journal of Structural Engineering. 6 (2), 147-158 (2015).
  23. Stewart, M. G., Mullard, J. A. Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures. Engineering Structures. 29 (7), 1457-1464 (2007).
  24. Kashani, M. M., Lowes, L. N., Crewe, A. J., Alexander, N. A. Finite element investigation of the influence of corrosion pattern on inelastic buckling and cyclic response of corroded reinforcing bars. Engineering Structures. 75, 113-125 (2014).
  25. Apostolopoulos, C. A., Demis, S., Papadakis, V. G. Chloride-induced corrosion of steel reinforcement – Mechanical performance and pit depth analysis. Construction and Building Materials. 38, 139-146 (2013).
  26. Imperatore, S., Rinaldi, Z., Drago, C. Degradation relationships for the mechanical properties of corroded steel rebars. Construction and Building Materials. , 219-230 (2017).
  27. Kashani, M. M. Size effect on inelastic buckling behaviour of accelerated pitted 1 corroded bars in porous media. Journal of Materials in Civil Engineering. 29 (7), (2017).
  28. Meda, A., Mostosi, S., Rinaldi, Z., Riva, P. Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns. Engineering Structures. 76, 112-123 (2014).
  29. Kashani, M. M., Crewe, A. J., Alexander, N. A. Structural capacity assessment of corroded RC bridge piers. Proceedings of the Institution of Civil Engineers – Bridge Engineering. 170 (1), 28-41 (2017).
  30. National Standard of the People’s Republic of China. . Standard for test methods of long-term performance and durability of ordinary concrete, Ministry of Housing and Urban-Rural Development of the People’s Republic of China, GB/T 50082-2009. , (2009).
check_url/kr/57859?article_type=t

Play Video

Cite This Article
Li, D., Li, P., Du, Y., Wei, R. Applicability Analysis of Assessment Methods for Morphological Parameters of Corroded Steel Bars. J. Vis. Exp. (141), e57859, doi:10.3791/57859 (2018).

View Video