Summary

蝗虫下颚触角 Basiconica 单触角记录

Published: June 23, 2018
doi:

Summary

本文介绍了触角 basiconica 瓣昆虫口器的单触角记录的一种详细、高效的协议。

Abstract

蝗虫口器的瓣被认为是传统的味觉器官, 在蝗虫的食物选择中起着重要作用, 特别是通过触角 chaetica 检测非挥发性化学线索 (以前命名的终端触角或冠触角)。现在越来越多的证据表明, 这些瓣也有嗅觉功能。气味受体 (LmigOR2) 和气味结合蛋白 (LmigOBP1) 已分别在神经元和附属细胞, 在触角 basiconica 的瓣。单触角记录 (SSR) 用于记录气味受体神经元的反应, 是筛选特异气味受体活性配体的有效方法。SSR 用于下颚触角气味受体的功能研究。位于瓣圆顶上的触角 basiconica 的结构与天线上的结构有一定的不同。因此, 当执行气味引起的 SSR 时, 一些特定的建议可能有助于获得最佳结果。本文介绍了一种针对昆虫下颚触角 basiconica 的 SSR 的详细、高效的协议。

Introduction

动物已经进化出一系列的化学感受器官来感知外源化学线索。在昆虫中, 最重要的化学感受器官是触角和瓣。在这些器官, 几种类型的化学感受毛, 称为化学感受触角, 是支配的化学感受神经元 (国别战略说明) 在头发。国别战略说明在化学感受触角识别特定的化学线索, 通过信号转导从化学刺激到电位, 随后转移到中枢神经系统1,2,3.

国别战略说明表达各种化学感受受体 [例如, 气味受体 (口服)], 离子型受体 (IRs) 和味觉受体 (GRs) 在他们的细胞膜上, 编码外源化学线索相关的不同类型的 chemosensation4,5,6。国别战略说明的特性是阐明昆虫 chemoreception 细胞和分子机制的关键。现在单触角记录 (SSR) 是一种广泛使用的技术, 用于国别战略说明昆虫的触角触角的特征, 包括蝇7、蛾8、甲虫9、蚜虫10、蝗虫11和蚂蚁12。然而, 很少有研究将 SSR 应用于昆虫瓣1314151617, 因为它们的触角的特殊结构使电生理记录困难18

成群的蝗虫 (直翅目) 经常造成严重的农作物损害和经济损失19。瓣被认为在蝗虫2021222324的食物选择中起着重要作用。采用扫描电镜 (SEM) 对两种化学感受触角进行了研究。通常, 350 触角 chaetica 和 7-8 触角 basiconica 在蝗虫的每个圆顶瓣18被观察。触角 chaetica 是味觉触角, 感觉非挥发性化学线索, 而触角 basiconica 有嗅觉功能, 感知挥发性化学线索。

在蝗虫瓣, 触角 basiconica (约12µm) 的毛插座直径比触角 chaetica (8 µm)18,25大得多。瓣上触角 basiconica 的表皮壁比触角触角18厚得多。另外, 下颚的圆顶在高度灵活的角质层之内有液体内容。这些特征意味着, 微电极的穿透和良好的电生理信号的获得比触角触角更困难。本文提出了一种用于蝗虫下颚触角 basiconica 的详细、高效的 SSR 协议。

Protocol

1. 仪器和昆虫的制备 制备钨电极和刺激溶液 固定一个新的钨线 (直径为0.125 毫米, 长度为75毫米) 成一个机器人, 并锐化它在 10% (瓦特/v) 亚硝酸钠 (纳米2) 溶液中的一个注射器在 10 v 在一个显微镜 (40X 放大倍数) 的电源提供约1分钟。 将锐钨丝反复浸入10% 纳米2溶液中, 约4毫米, 5 V < 1 分钟 (图 1A)。 在显微镜下经常检?…

Representative Results

基于不同反应动力学的化学气味 (10% 1-壬醇和10% 壬酸), 确定了蝗虫上颌下颚的两个触角亚型 (pb1 和 pb2)。pb1 神经元的峰值比壬酸大 1-壬醇, 而 pb2 的神经元比壬醇酸显著降低1壬的活化 (图 4)。己醛和 E-2-Hexenal 能诱发蝗虫下颚26的开放反应。己醛是一个丰富的寄主植物绿叶挥发性, 这可能有助于进一步确认食品来源26?…

Discussion

昆虫依靠瓣来检测食物的气味, 他们的瓣被认为在物种13,27中扮演着重要的角色。瓣是一种简单的嗅觉器官, 越来越受到人们的重视, 作为探索 chemosensation28neuromolecular 网络的一个吸引人的模式。

昆虫 labellar 和下颚 SSRs 已成功地在果蝇按蚊按蚊淡色致倦13,<sup class="xr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金 (31472037 号) 的资助。在本条中提及商号或商业产品, 纯粹是为了提供具体资料, 并不意味着建议。

Materials

Tungsten wire ADVENT W559504 Used for making the electrode and fixing the palp
NaNO2 Sigma-aldrich 563218-25G Used for sharpening the tungsten wire
AC Power Supply Syntech A2-70 Providing the voltage in sharpening the tungsten wire
Stereoscope Motic SMZ-163 Used for observing the sharpening of tungsten wire
Microscope Olympus W-51 Used for observing the sensilla on locust maxillary palp
Intelligent Data Acquisition Controller Syntech IDAC-4 Real-time on screen display of all signals before and during recording
Stimulus controller Syntech CS-55 Used for controlling the stimulus application
Electronic micromanipulator C.M.D.T CFT-8301D Used for minor movement of the recording electrode
Micromanipulator Narishige MN-151 Used for minor movement of the reference electrode
Speaker EDIFIER R101T06 Connected with IDAC-4 and providing sound for the signal
Magnetic base PDOK PD-101 Used to hold the electrode, and stimulus delivery tube
Vibration Isolation Table TianHe HAP-100-1208 Used for isolating the vibration from the equipment
Glass slide CITOGLAS ZBP-407 Used for making the base for the MPH
Blu-tack Bostik Blu-tack-45g Fixing the tungsten wire
Pasteur tube YARE WITEG Placing the filter paper containing stimuli solutions

References

  1. Carey, A. F., Carlson, J. R. Insect olfaction from model systems to disease control. Proceedings of the National Academy of Sciences of the United States of America. 108 (32), 12987-12995 (2011).
  2. Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology. 58, 373-391 (2013).
  3. Zhang, J., Walker, W. B., Wang, G. Pheromone reception in moths: from molecules to behaviors. Progress in Molecular Biology and Translational Science. 130, 109-128 (2015).
  4. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 96 (5), 725-736 (1999).
  5. Benton, R., Vannice, K. S., Gomez-Diaz, C., Vosshall, L. B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 136 (1), 149-162 (2009).
  6. Vosshall, L. B., Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annual Review of Neuroscience. 30, 505-533 (2007).
  7. de Bruyne, M., Foster, K., Carlson, J. R. Odor coding in the Drosophila antenna. Neuron. 30, 537-552 (2001).
  8. Roelofs, W., et al. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proceedings of the National Academy of Sciences of the United States of America. 84 (21), 7585-7589 (1987).
  9. Larsson, M. C., Leal, W. S., Hansson, B. S. Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). Journal of Insect Physiology. 47 (9), 1065-1076 (2001).
  10. Zhang, R., et al. Molecular basis of alarm pheromone detection in aphids. Current Biology. 27 (1), 55-61 (2017).
  11. Cui, X., Wu, C., Zhang, L. Electrophysiological response patterns of 16 olfactory neurons from the trichoid sensilla to odorant from fecal volatiles in the locust, Locusta migratoria manilensis. Archives of Insect Biochemistry and Physiology. 77 (2), 45-57 (2011).
  12. Sharma, K. R., et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Reports. 12 (8), 1261-1271 (2015).
  13. de Bruyne, M., Clyne, P. J., Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. Journal of Neuroscience. 19 (11), 4520-4532 (1999).
  14. Syed, Z., Leal, W. S. Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chemical Senses. 32 (8), 727-738 (2007).
  15. Lu, T., et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Current Biology. 17 (18), 1533-1544 (2007).
  16. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. Journal of Visualized Experiments. 36, e1725 (2010).
  17. Grant, A. J., Wigton, B. E., Aghajanian, J. G., O’Connell, R. J. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. Journal of Comparative Physiology A. 177 (4), 389-396 (1995).
  18. Blaney, W. The ultrastructure of an olfactory sensillum on the maxillary palps of Locusta migratoria (L.). Cell and Tissue Research. 184 (3), 397-409 (1977).
  19. Hassanali, A., Njagi, P. G. N., Bashir, M. O. Chemical ecology of locusts and related acridids. Annual Review of Entomology. 50, 223-245 (2005).
  20. Chapman, R. F. Contact chemoreception in feeding by phytophagous insects. Annual Review of Entomology. 48, 455-484 (2003).
  21. Chapman, R. F., Sword, G. The importance of palpation in food selection by a polyphagous grasshopper (Orthoptera: Acrididae). Journal of Insect Behavior. 6, 79-91 (1993).
  22. Winstanley, C., Blaney, W. Chemosensory mechanisms of locusts in relation to feeding. Entomologia Experimentalis et Applicata. 24, 750-758 (1978).
  23. Blaney, W., Duckett, A. The significance of palpation by the maxillary palps of Locusta migratoria (L.): an electrophysiological and behavioural study. Journal of Experimental Biology. 63, 701-712 (1975).
  24. Blaney, W. Electrophysiological responses of the terminal sensilla on the maxillary palps of Locusta migratoria (L.) to some electrolytes and non-electrolytes. Journal of Experimental Biology. 60, 275-293 (1974).
  25. Jin, X., Zhang, S., Zhang, L. Expression of odorant-binding and chemosensory proteins and spatial map of chemosensilla on labial palps of Locusta migratoria (Orthoptera: Acrididae). Anthropod Structure & Development. 35 (1), 47-56 (2006).
  26. Zhang, L., Li, H., Zhang, L. Two olfactory pathways to detect aldehydes on locust mouthpart. International Journal of Biological Sciences. 13 (6), 759-771 (2017).
  27. Dweck, H. K. M., et al. Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife. 5, e14925 (2016).
  28. Bohbot, J. D., Sparks, J. T., Dickens, J. C. The maxillary palp of Aedes aegypti, a model of multisensory Integration. Insect Biochemistry and Molecular Biology. 48, 29-39 (2014).
  29. Delventhal, R., Kiely, A., Carlson, J. R. Electrophysiological recording from Drosophila labellar taste sensilla. Journal of Visualized Experiments. 84, e51355 (2014).
  30. Ng, R., Lin, H. H., Wang, J. W., Su, C. Y. Electrophysiological recording from Drosophila trichoid sensilla in response to odorants of low volatility. Journal of Visualized Experiments. 125, e56147 (2017).
  31. Syed, Z., Leal, W. S. Electrophysiological measurements from a moth olfactory system. Journal of Visualized Experiments. 49, e2489 (2011).
  32. Saha, D., Leong, K., Katta, N., Raman, B. Multi-unit recording methods to characterize neural activity in the locust (Schistocerca Americana) olfactory circuits. Journal of Visualized Experiments. 71, e50139 (2013).
  33. Liu, F., Liu, N. Using single sensillum recording to detect olfactory neuron responses of bed bugs to semiochemicals. Journal of Visualized Experiments. 107, e53337 (2016).
check_url/kr/57863?article_type=t

Play Video

Cite This Article
Li, H., You, Y., Zhang, L. Single Sensillum Recordings for Locust Palp Sensilla Basiconica. J. Vis. Exp. (136), e57863, doi:10.3791/57863 (2018).

View Video