Summary

用内部方法设计上颌重建的 cad/cam 手术指南

Published: August 24, 2018
doi:

Summary

介绍了计算机辅助设计/计算机辅助制造 (cad/cam) 外科指南的设计方法。切割平面分离, 联合, 加厚, 以方便地可视化必要的骨转移。这些设计可以三维打印和检查的准确性。

Abstract

计算机辅助设计/计算机辅助制造 (cad/cam) 现正作为颌面外科的制备技术进行评估。由于这项技术成本高昂, 而且在世界上只有有限的地区可用, 我们开发了一种新的 CAD/CAM 外科指南, 采用内部方法。采用 CAD 软件, 确定上颌切除面积、截割面、腓骨切割面和角度。一旦确定了切除区域, 就用布尔修饰符提取必要的面孔。这些肤浅的面孔被团结了适合骨头的表面和加厚稳定固体。不仅在腓骨和上颌骨的切割指导, 而且转移骨段的位置安排是通过加厚表面的面孔定义的。CAD 设计被记录为. stl 文件和三维 (3 维) 打印为实际的外科指南。为了检查指南的准确性, 采用3维打印的面部和腓骨模型进行手术。这些方法可用于协助未提供商业指南的外科医生。

Introduction

cad/cam 技术的使用最近在牙科和义齿工作中有所增加。继 cad/cam 的进化后, 腓骨瓣转移使用 cad/cam 现在用于下颌骨重建领域的肿瘤广泛切除恶性肿瘤1,2,3。一些西方国家的公司已经开始为下颌骨地区提供和销售 CAD/凸轮切割指南。下颌骨的 CAD/凸轮重建被认为在精确度456789、10等方面有优势. ,11。然而, 一个缺点是这项技术在世界范围有限的地区是可利用的, 并且它是非常昂贵的12。因此, 上颌病变的 cad/cam 重建尚未流行。上颌重建的病例数低于下颌骨, 商业指南不常见。

由于在日本没有销售商用上颌 cad/凸轮导轨, 我们使用内部方法开发了 cad/cam 外科指南。cad/cam 指南的临床效果已报告13141516171819, 但没有报告如何设计它们。本报告的目的是用一种低成本的内部方法显示 cad/cam 设计方法。

Protocol

这项研究得到了作者的机构审查委员会的批准, 所有患者都完成了书面同意表格。 1. 材料的制备 使用个人计算机, 计算机断层扫描 (CT) 数据的面部骨骼和腓骨, 转换软件, 如 InVesalius20和三维 (3 维) CAD 软件 (如搅拌机21)。注: 为精确设计推荐1毫米 CT 数据的最大厚度。对于实际的手术模拟, 使用病人的 CT 资料。为了研究, 使用?…

Representative Results

使用这里提出的程序, 首先确定切除区。使用 CAD 软件, 切除区域完全受面约束。这个区域从面部骨头被一个布尔操作减去。腓骨图像被放置在缺陷上, 腓骨切割面放置在适当的重建点。所有腓骨切开的面孔在父母设置连接了腓骨。这些面孔被做了更小和团结了做固体。腓骨被从这些固体中减去, 然后成为腓骨切割指南。面部骨的其余表面也加厚;这些成为上颌切割指南。腓?…

Discussion

CAD/CAM 重建被认为有助于达到准确的截骨长度, 宽度和角度的切割骨骼, 而使用切割指南4,5,6,7,8 ,9,10,11,12,13,14,</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分是由 jsp KAKENHI 授予号 JP17K11914 支持的。

Materials

Information Technology Center, Renato Archer, Campinas, Brazil InVesalius Free software https://www.cti.gov.br/en/invesalius
The Blender Foundation, Amsterdam, Netherlands Blender Free software https://www.blender.org/
TurboSquid, Inc. 935 Gravier St., Suite 1600, New Orleans, LA. Free 3D skeletal data file Free3D https://free3d.com/3d-models/human
MakerBot Industries, LLC One MetroTech Center, 21st Fl, Brooklyn, NY. MakerBot Replicator+ https://www.makerbot.com/replicator/
YouTube (Google, Inc.), 901 Cherry Ave. San Bruno, CA video sharing website. https://www.youtube.com/results?search_query=invesalius+dicom+to+stl
Artec 3D, 2, rue Jean Engling, Luxembourg Artec Eva Lite https://www.artec3d.com/portable-3d-scanners/artec-eva-lite
CloudCompare CloudCompare http://www.danielgm.net/cc/

References

  1. Hirsch, D. L., et al. Use of computer-aided design and computer-aided manufacturing to produce orthognathically ideal surgical outcomes: A paradigm shift in head and neck reconstruction. Journal of Oral and Maxillofacial Surgery. 67 (10), 2115-2122 (2009).
  2. Hanasono, M. M., Skoracki, R. J. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. The Laryngoscope. 123 (3), 597-604 (2013).
  3. Roser, S. M., et al. The accuracy of virtual surgical planning in free fibula mandibular reconstruction: Comparison of planned and final results. Journal of Oral and Maxillofacial Surgery. 68 (11), 2824-2832 (2010).
  4. Ayoub, N., et al. Evaluation of computer assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: A randomized prospective clinical trial. Trials. 15, 114 (2014).
  5. Stirling, C. E., et al. Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction. Microsurgery. 35 (1), 29-33 (2015).
  6. Schepers, R. H., et al. Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: a new modality for functional reconstruction of mandibular defects. Journal of Cranio-Maxillofacial Surgery. 43 (5), 649-657 (2015).
  7. Tarsitano, A., et al. Mandibular reconstructions using computer-aided design/computer-aided manufacturing: a systematic review of a defect-based reconstructive algorithm. Journal of Cranio-Maxillofacial Surgery. 43 (9), 1785-1791 (2015).
  8. Wilde, F., et al. Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. International Journal of Computer Assisted Radiology and Surgery. 10 (12), 2035-2051 (2015).
  9. Huang, J. W., et al. Preliminary clinic study on computer assisted mandibular reconstruction: the positive role of surgical navigation technique. Maxillofacial Plastic and Reconstructive Surgery. 37 (1), 20 (2015).
  10. Numajiri, T., Nakamura, H., Sowa, Y., Nishino, K. Low-cost design and manufacturing of surgical guides for mandibular reconstruction using a fibula. Plastic and Reconstructive Surgery – Global Open. 4 (7), 805 (2016).
  11. Numajiri, T., Tsujiko, S., Morita, D., Nakamura, H., Sowa, Y. A fixation guide for the accurate insertion of fibular segments in mandibular reconstruction. Journal of Plastic, Reconstructive & Aesthetic Surgery. Open. 12 (8), 1-8 (2017).
  12. Toto, J. M., et al. Improved operative efficiency of free fibula flap mandible reconstruction with patient specific, computer-guided preoperative planning. Head & Neck. 37 (11), 1660-1664 (2015).
  13. Avraham, T., et al. Functional outcomes of virtually planned free fibula flap reconstruction of the mandible. Plastic and Reconstructive Surgery. 134 (628), 634 (2014).
  14. Sieira, G. R., et al. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modeling, and precontoured titanium reconstruction plates: A prospective study. British Journal of Oral and Maxillofacial Surgery. 53 (1), 49-55 (2015).
  15. Seruya, M., Fisher, M., Rodriguez, E. D. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: An outcomes comparison. Plastic and Reconstructive Surgery. 132 (5), 1219-1225 (2013).
  16. Metzler, P., et al. Three-dimensional virtual surgery accuracy for free fibula mandibular reconstruction: Planned versus actual results. Journal of Oral and Maxillofacial Surgery. 72 (12), 2601-2604 (2014).
  17. Numajiri, T., et al. Using an in-house approach to CAD/CAM reconstruction of the maxilla. Journal of Oral and Maxillofacial Surgery. 76 (6), 1361-1369 (2018).
  18. Bosc, R., et al. Mandibular reconstruction after cancer: An in-house approach to manufacturing cutting guides. International Journal of Oral and Maxillofacial Surgery. 46 (1), 24-29 (2017).
  19. Ganry, L., et al. Three-dimensional surgical modeling with an open-source software protocol: Study of precision and reproducibility in mandibular reconstruction with the fibula free flap. International Journal of Oral and Maxillofacial Surgery. 46 (8), 946-950 (2017).
  20. . InVesalius Available from: https://www.cti.gov.br/en/invesalius (2018)
  21. . Blender Available from: https://www.blender.org/ (2018)
  22. . Free3D Available from: https://free3d.com/3d-models/human (2018)
  23. . MakerBot Replicator+ Available from: https://www.makerbot.com/replicator/ (2018)
  24. . Artec Eva Lite Available from: https://www.artec3d.com/portable-3d-scanners/artec-eva-lite (2018)
  25. Guerrero-de-Mier, A., Espinosa, M. M., Dominguez, M. Bricking: A new slicing method to reduce warping. Procedia Engineering. 132, 126-131 (2015).
  26. Petropolis, C., Kozan, D., Sigurdson, L. Accuracy of medical models made by consumer-grade fused deposition modeling printers. Plastic Surgery. 23 (2), 91-94 (2015).
  27. Alsoufi, M. S., Elsayed, A. E. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system. International Journal of Mechanical and Mechatronics Engineering (IJMME) – International Journal of Engineering and Sciences (IJENS). 17 (4), 7-16 (2017).
  28. Maschio, F., Pandya, M., Olszewski, R. Experimental validation of plastic mandible models produced by a “low-cost” 3-dimensional fused deposition modeling printer. Medical Science Monitor. 22, 943-957 (2016).
  29. Rendon-Medina, M. A., Andrade-Delgado, L., Telich-Tarriba, J. E., Fuente-Del-Campo, A., Altamirano-Arcos, C. A. Dimensional error in rapid prototyping with open source software and low-cost 3D-printer. Plastic and Reconstructive Surgery – Global Open. 6 (1), 1646 (2018).
  30. Nizam, A., Gopal, R. N., Naing, L., et al. Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Archives of Orofacial Sciences. 1, 60-66 (2006).
check_url/kr/58015?article_type=t

Play Video

Cite This Article
Numajiri, T., Morita, D., Nakamura, H., Yamochi, R., Tsujiko, S., Sowa, Y. Designing CAD/CAM Surgical Guides for Maxillary Reconstruction Using an In-house Approach. J. Vis. Exp. (138), e58015, doi:10.3791/58015 (2018).

View Video