Summary

家兔模型最佳胚胎阶段微创胚胎移植与胚胎玻璃化

Published: May 16, 2019
doi:

Summary

辅助生殖技术 (Art) 正在进行持续评估, 以改善结果并减少相关风险。这份手稿描述了一个微创胚胎移植程序与一个有效的冷冻保存协议, 允许使用兔子作为一个理想的动物模型的人类生殖。

Abstract

辅助生殖技术 (Art), 如体外胚胎培养或胚胎冷冻保存, 会影响自然发育模式, 并造成围产期和产后的后果。为了确保 ART 应用的无害性, 有必要对动物模型进行研究。此外, 作为最后一步, 胚胎发育研究需要评估他们发育足月健康后代的能力。在这里, 胚胎移植到子宫是必不可少的, 以执行任何与艺术有关的实验。

一个多世纪以来, 兔子一直被用作研究哺乳动物繁殖的模型生物。除了系统发育接近人类物种和体积小, 维护成本低之外, 它还具有重要的生殖特征, 如诱导排卵、类似人类的早期胚胎发育年表和短怀孕使我们能够很容易地研究抗逆转录病毒疗法应用的后果。此外, Art (如胞浆内精子注射、胚胎培养或冷冻保存) 在本物种中具有适当的应用效率。

利用腹腔镜胚胎移植技术和本文提出的冷冻保存方案, 描述了 1) 如何通过简单、微创技术移植胚胎, 2) 一种有效的兔长期储存方案以提供时间灵活的后勤能力和运输样品的能力。在不同发育阶段移植兔胚胎后得到的结果表明, 莫鲁拉是兔胚胎恢复和移植的理想阶段。因此, 输卵管胚胎移植是必要的, 证明手术的合理性。此外, 还成功地对兔进行了玻璃化和腹腔镜转移, 证明了所述技术的有效性。

Introduction

为了绕过人类不育或改善高遗传价值牲畜的传播和保护动物遗传资源, 一套统称为辅助生殖技术的技术, 如超排卵, 在体外受精, 胚胎培养, 或冷冻保存, 发展 1, 2。目前, 激素治疗是为了刺激卵巢, 并产生大量的卵泡 1.从这些卵泡中收集的卵母细胞可以成熟、受精和体发育, 直到它们被冷冻保存或转移到代孕母亲3。然而, 在这些治疗过程中, 配子和合子暴露在一系列非生理过程中, 这些过程可能需要胚胎适应才能在这些条件下存活 4,5。这种适应是可能的由于早期胚胎可塑性, 允许胚胎在基因表达和发育编程6的变化。然而, 这些修饰会影响到成年前胚胎发育的各个阶段, 现在人们普遍认为, 方法、时间、冷冻保存程序或培养条件对胚胎命运的影响是不同的。,8. 因此, 为了阐明抗逆转录病毒疗法的具体诱发影响, 使用特征良好的动物模型是不可避免的。

1890年发生了第一次由哺乳动物胚胎移植而产生的活产.如今, 胚胎移植 (ET) 对代孕女性的影响是研究胚胎植入前对随后胚胎发育阶段10的抗逆转录病毒效应的关键一步。ET 技术取决于每种动物的大小和解剖结构。在大型动物模型的情况下, 它是可能的执行 et 通过经宫颈非手术 ET 技术, 但在较小的物种导尿子宫颈是比较复杂的, 手术技术是经常使用 11.然而, 手术 ET 可导致出血, 可能会损害植入和胚胎发育, 因为血液会侵入子宫腔, 导致胚胎死亡10。经宫颈非手术 et 技术仍适用于人类、、牛、猪和小鼠12131415、16、17, 但手术E t 仍被用于山羊、绵羊或其他动物等物种, 这些动物会带来额外的困难,兔子(两种)或小鼠 (小尺寸)。尽管如此, 手术转移方法往往已逐渐被侵入性较小的方法所取代。内窥镜检查被用来转移胚胎, 例如, 在兔子, 猪和小反刍动物18,19,20。这些微创内窥镜方法可用于通过漏斗将胚胎移植到壶腹, 这在兔子中是必不可少的, 并已在某些物种20中显示出有益的效果。这是基于胚胎和母亲在输卵管早期胚胎阶段正确对话的重要性。如上所述, 在胚胎通过输卵管的胚胎迁移过程中, 兔子的胚胎重塑对于实现能够植入22,23 的胚胎至关重要。

大尺寸的动物模型, 如牛, 很有趣, 因为生化和植入前的特征与人类 24 种相似。然而, 大型动物过于昂贵, 无法在初步试验中使用, 啮齿类动物被认为是实验室研究的理想模型 (76% 的模型生物是啮齿类动物)。然而, 兔子模型在生殖研究中比啮齿类动物有一些优势, 因为人类所表现出的一些生殖生物过程在兔子中比在小鼠身上更相似。人类和兔子呈现类似的胚胎基因组激活、胃和血液胎盘结构。此外, 使用兔子可以知道受精的确切时间和怀孕阶段, 因为他们诱发排卵25。兔子的生命周期很短, 31天内完成妊娠, 约4-5 进入青春期;这种动物由于其温顺和非攻击性的行为, 容易处理, 与大型动物的费用相比, 它的保养非常经济。此外, 重要的是要提到, 兔子有一个双子宫, 有两个独立的子宫颈11,25。这使得兔子处于优先的位置, 因为来自不同实验组的胚胎可以转移到同一动物体内, 但进入不同的子宫角。这使我们能够比较这两种实验效果, 减少母亲因素的结果。

如今, 非手术 ET 方法在兔中没有使用。在90年代末使用经颈椎 et 技术进行的一些研究导致低分娩率从5.5% 到 20.0 11,26和50-65 的手术方法, 其中包括腹腔镜手术描述Besenfelder 和 Brem18。这些非手术性 ET 方法在兔体内的成功率较低, 与输卵管缺乏必要的胚胎重塑而同时发生, 而输卵管输卵管内缺乏必要的胚胎重塑, 而输卵管内的胚胎重塑是避免的。在这里, 我们描述了一个有效的微创腹腔镜 ET 程序使用兔子作为模型生物。这项技术为大型动物和人类的生殖研究提供了一个模型。

由于家兔胚胎植入的时间窗口特别狭窄, 该物种的 et 要求在 ET 胚胎发育阶段和接受者27的生理状态之间有高度的同步性。在某些情况下, 在生殖治疗减缓胚胎发育 (如体外培养) 或改变子宫内膜接受度 (如超排卵治疗) 后, 胚胎和母亲子宫之间没有同步。这些情况会对结果产生负面影响。为了在这些情况下的反应, 我们描述了一个有效的兔子脑膜玻璃化协议, 使我们能够暂停, 组织和恢复实验。这一过程在后勤方面是生殖研究所需要的, 并使我们有能力长期储存胚胎, 使其能够运输。腹腔镜手术和冷冻保存策略可以更好地规划少动物的研究。因此, 我们的方法提供了卫生和经济优势, 并符合 3Rs (替换, 减少和细化) 的动物研究的概念, 明确的目标是改善人类对实验动物的治疗。因此, 有了这些方法, 兔子就成了体内生殖检测的理想模型生物。

Protocol

本研究中使用的所有实验程序都是根据关于动物实验的欧盟 eec 指令进行的, 并得到了 València Politècnica 大学动物实验伦理委员会的审查和批准。西班牙 (研究代码: 2015VSC/PEA/00号)。XGD、FMJ、MPVC 和 JSV 持有瓦伦西亚政府颁发的动物实验授权证书。XGD 被授权在实验期间对动物的福利和护理进行现场监督。 1. 胚胎移植 接受者女性的准备 仅使用性成熟的?…

Representative Results

微创腹腔镜移植新鲜或玻璃胚胎使兔子成为生殖研究的最佳模型动物之一。表 1显示了在不同发育阶段 (图 4) 转移的胚胎的新鲜 et 的结果。出生时的存活率 (胚胎产生小狗的百分比) 证明了本文所描述的腹腔镜技术的有效性。当在早期或紧凑型莫鲁拉阶段用胚胎进行 e t 时, 获得了较高的值。基于这些结果, 我们进行了第二次实验, 以证明?…

Discussion

自从第一个记录的活出生案例从转移的胚胎 9,这种技术和兔子物种已成为生殖研究的关键。此外, 涉及操纵、生产、冷冻保存的胚胎研究需要评估胚胎能力, 以产生健康的足月后代。因此, 胚胎移植技术是不可缺少的 13,28。多年来, 在绝大多数13、1415 种物种中, 最初用于将?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了西班牙经济和竞争力部 (AGL201-852-C2-R) 和 Generalitat Valenciana 研究方案 (PrometeoII 2014/3636) 的资助。N. Macowan 英语语言服务的英文版本修订

Materials

Bovine Serum Albumin (BSA) VWR 332
Buprenorphine hydrochloride Alvet Escartí 626 To be ordered by a licensed veterinarian.
Buserelin Acetate Sigma Aldrich B3303
Clorhexidine digluconate soap Alvet Escartí 0265DCCJ500B
Clorhexidine digluconate solution Alvet Escartí 0265DCCA500B
CO2 Air Liquide 99921 CO2 N48.
CO2 Incubator Fisher scientific 15385194
Dimethyl Sulfoxide Sigma Aldrich W387509
Dulbecco’s phosphate-buffered saline (DPBS) Sigma Aldrich D5773 Without calcium chloride.
Electric razor Oster Golden A5 078005-140-002
Endoscope camera Optomic Spain S.A OP-714
Endoscope trocar with silicone leaflet valve Karl Storz Endoscopia Ibérica S.A. 30114GK Lightweight trocar model.
Enrofloxacin Alvet Escartí 9993046 To be ordered by a licensed veterinarian.
Epicraneal needle 23G Alvet Escartí 514056353 Smaller needles can be also used.
Epidural catheter Vygon corporate 187.10
Epidural needle Vygon corporate 187.10
Ethylene Glycol Sigma Aldrich 102466-M
Eye ointment Alvet Escartí 5273
Ketamine hydrochloride Alvet Escartí 184 To be ordered by a licensed veterinarian.
Laparoscopy equipment Karl Storz Endoscopia Ibérica S.A. 26003 AA Hopkins® Laparoscope, 0º-mm straight-viewing laparoscope, 30-cm length, 5-mm working channel.
Light source Optomic Spain S.A Fibrolux 250
Liquid Nitrogen Air Liquide P1505XXX
Mechanical CO2 insufflator Karl Storz Endoscopia Ibérica S.A. Endoflator®
Meloxicam Alvet Escartí 9993501 To be ordered by a licensed veterinarian.
Petri dishes, 35-mm Sigma Aldrich CLS430165-500EA
Plastic dressing (Nobecutan) IBOR medica 7140028
Plastic Straw 0.25 mL IMV – technologies 6431
Povidone iodide solution Alvet Escartí 02656DPYS500S
Scissors ROBOZ RS-5880 Any regular surgical grade steel small straight scissors will work.
Silicone tube for insufflator Karl Storz Endoscopia Ibérica S.A. 20400040
Stereomicroscope Leica MZ16F There are cheaper options such as Leica MZ8 or Nikon SMZ-10 or SMZ-2B, to name a few.
Sterile Gloves Alvet Escartí 087GL010075
Sterile gown Alvet Escartí 12261501
Sterile mask Alvet Escartí 058B15924B
Straw Plug IMV – technologies 6431
Sucrose Sigma Aldrich S7903
Syringe, 1-mL Fisher scientific 11750425
Syringe, 5-mL Fisher scientific 11773313
Urinary catheter IMV – technologies 17722
Waterbath RAYPA BAE-4
Xylazine Alvet Escartí 525225 To be ordered by a licensed veterinarian.
Rabbits Universitat Politècnica de València Line A Other maternal lines, such as Line V or Line HP can be used.

References

  1. Chen, M., Heilbronn, L. K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease. 8 (4), 388-402 (2017).
  2. Lavara, R., Baselga, M., Marco-Jiménez, F., Vicente, J. S. Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology. 84 (5), 674-680 (2015).
  3. Sirard, M. A. The influence of in vitro. fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model. Journal of Developmental Origins of Health and Disease. 8 (4), 411-417 (2017).
  4. Feuer, S. K., Rinaudo, P. F. Physiological, metabolic and transcriptional postnatal phenotypes of in vitro. fertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease. 8 (4), 403-410 (2017).
  5. Jiang, Z., et al. Genetic and epigenetic risks of assisted reproduction. Best Practice & Research: Clinical Obstetrics & Gynaecology. 44, 90-104 (2017).
  6. Fleming, T. P., Velazquez, M. A., Eckert, J. J. Embryos, DOHaD and David Barker. Journal of Developmental Origins of Health and Disease. 6 (5), 377-383 (2015).
  7. Sparks, A. E. Human embryo cryopreservation-methods, timing, and other considerations for optimizing an embryo cryopreservation program. Seminars in Reproductive Medicine. 33 (2), 128-144 (2015).
  8. Swain, J. E. Optimal human embryo culture. Seminars in Reproductive Medicine. 33 (2), 103-117 (2015).
  9. Heape, W. Preliminary note on the transplantation and growth of mammalian ova within a uterine foster-mother. Proceedings of the Royal Society of London B: Biological Sciences. 48, 457-459 (1890).
  10. Bermejo-Alvarez, P., Park, K. E., Telugu, B. P. Utero-tubal embryo transfer and vasectomy in the mouse model. Journal of Visualized Experiments. (84), e51214 (2014).
  11. Kidder, J. D., Roberts, P. J., Simkin, M. E., Foote, R. H., Richmond, M. E. Nonsurgical collection and nonsurgical transfer of preimplantation embryos in the domestic rabbit (Oryctolagus cuniculus) and domestic ferret (Mustela putorius furo). Journal of Reproduction and Fertility. 116 (2), 235-242 (1999).
  12. Tıras, B., Cenksoy, P. O. Practice of embryo transfer: recommendations during and after. Seminars in Reproductive Medicine. 32 (4), 291-296 (2014).
  13. Cui, L., et al. Transcervical embryo transfer in mice. Journal of the American Association for Laboratory Animal Science. 53 (3), 228-231 (2014).
  14. Moreno-Moya, J. M., et al. Complete method to obtain, culture, and transfer mouse blastocysts nonsurgically to study implantation and development. Fertility and Sterility. 101 (3), e13 (2014).
  15. Hasler, J. F. Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology. 81 (1), 152-169 (2014).
  16. Bauer, C. The baboon (Papio sp.) as a model for female reproduction studies. Contraception. 92 (2), 120-123 (2015).
  17. Martinez, E. A., et al. Nonsurgical deep uterine transfer of vitrified, in vivo-derived, porcine embryos is as effective as the default surgical approach. Science Reports. 5, 10587 (2015).
  18. Besenfelder, U., Brem, G. Laparoscopic embryo transfer in rabbits. Journal of Reproduction and Fertility. 99, 53-56 (1993).
  19. Besenfelder, U., Mödl, J., Müller, M., Brem, G. Endoscopic embryo collection and embryo transfer into the oviduct and the uterus of pigs. Theriogenology. 47 (5), 1051-1060 (1997).
  20. Besenfelder, U., Havlicek, V., Kuzmany, A., Brem, G. Endoscopic approaches to manage in vitro and in vivo embryo development: use of the bovine oviduct. Theriogenology. 73 (6), 768-776 (2010).
  21. Fonseca, J. F., et al. Nonsurgical embryo recovery and transfer in sheep and goats. Theriogenology. 86 (1), 144-151 (2016).
  22. Denker, H. W. Structural dynamics and function of early embryonic coats. Cells Tissues Organs. 166, 180-207 (2000).
  23. Marco-Jiménez, F., López-Bejar, M. Detection of glycosylated proteins in rabbit oviductal isthmus and uterine endometrium during early embryo development. Reproduction in Domestic Animals. 48 (6), 967-973 (2013).
  24. Ménézo, Y. J., Hérubel, F. Mouse and bovine models for human IVF. Reproductive BioMedicine Online. 4 (2), 170-175 (2002).
  25. Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., Duranthon, V. Rabbit as a reproductive model for human health. Reproduction. 144 (1), 1-10 (2012).
  26. Besenfelder, U., Strouhal, C., Brem, G. A method for endoscopic embryo collection and transfer in the rabbit. Zentralbl Veterinarmed A. 45 (9), 577-579 (1998).
  27. Daniel, N., Renard, J. P. Embryo transfer in rabbits. Cold Spring Harbor Protocols. 2010 (1), (2010).
  28. Saenz-de-Juano, M. D., et al. Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. Reproduction. 147 (6), 789-801 (2014).
  29. Green, M., Bass, S., Spear, B. A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. Biotechniques. 47 (5), 919-924 (2009).
  30. Duan, X., Li, Y., Di, K., Huang, Y., Li, X. A nonsurgical embryo transfer technique in mice. Sheng Wu Gong Cheng Xue Bao. 32 (4), 440-446 (2016).
  31. Denker, H. W., Gerdes, H. J. The dynamic structure of rabbit blastocyst coverings. I. Transformation during regular preimplantation development. Anatomy and Embryology. 157, 15-34 (1979).
  32. Seidel, G. E., Bowen, R. A., Kane, M. T. In vitro fertilization, culture and transfer of rabbit ova. Fertility and Sterility. 27, 861-870 (1976).
  33. Binkerd, P. E., Anderson, G. B. Transfer of cultured rabbit embryos. Gamete Research. 2, 65-73 (1979).
  34. Murakami, H., Imai, H. Successful implantation of in vitro cultured rabbit embryos after uterine transfer: a role for mucin. Molecular Reproduction and Development. 43, 167-170 (1996).
  35. Techakumphu, M., Wintenberger-Torrèsa, S., Sevelleca, C., Ménézo, Y. Survival of rabbit embryos after culture or culture/freezing. Animal Reproduction Science. 13 (3), 221-228 (1987).
  36. Gitzelmann, C. A., et al. Cell-mediated immune response is better preserved by laparoscopy than laparotomy. Surgery. 127 (1), 65-71 (2000).
  37. Huang, S. G., Li, Y. P., Zhang, Q., Redmond, H. P., Wang, J. H., Wang, J. Laparotomy and laparoscopy diversely affect macrophage-associated antimicrobial activity in a murine model. BMC Immunology. 14, 27 (2013).
  38. Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., Vicente, J. S. Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. Public Library of Science One. 11 (2), e0148661 (2016).
  39. Marco-Jiménez, F., Jiménez-Trigos, E., Lavara, R., Vicente, J. S. Generation of live offspring from vitrified embryos with synthetic polymers supercool X-1000 and Supercool Z-1000. CryoLetters. 35, 286-292 (2014).
  40. Marco-Jiménez, F., Jiménez-Trigos, E., Lavara, R., Vicente, J. S. Use of cyclodextrins to increase cytoplasmic cholesterol in rabbit embryos and their impact on live KITs derived from vitrified embryos. Cryoletters. 35, 320-326 (2014).
  41. Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., Vicente, J. S. In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology. 79 (7), 1124-1129 (2013).
  42. Vicente, J. S., et al. Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology. 67, 321-326 (2013).
  43. Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., Vicente, J. S. Effect of corifollitropin alfa supplemented with or without Lh on ovarian stimulation and embryo viability in rabbit. Theriogenology. 98, 68-74 (2017).
  44. Saenz-de-Juano, M. D., et al. Vitrification alters at transcriptomic and proteomic level rabbit foetal placenta. Reproduction. 147, 789-801 (2014).
  45. Saenz-de-Juano, M. D., Marco-Jimenez, F., Viudes-de-Castro, M. P., Lavara, R., Vicente, J. S. Direct comparison of the effects of slow freezing and vitrification on late blastocyst gene expression, development, implantation and offspring of rabbit morulae. Reproduction in Domestic Animals. 49, 505-511 (2014).
  46. Lavara, R., Baselga, M., Marco-Jiménez, F., Vicente, J. S. Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology. 81, 988-992 (2014).
  47. Saenz-de-Juano, M. D., Marco-Jiménez, F., Vicente, J. S. Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology. 207, 50-55 (2016).
  48. Roque, M., Valle, M., Kostolias, A., Sampaio, M., Geber, S. Freeze-all cycle in reproductive medicine: current perspectives. JBRA Assisted Reproduction. 21 (1), 49-53 (2017).
  49. Tsunoda, Y., Soma, T., Sugie, T. Effect of post-ovulatory age of recipient on survival of frozen-thawed rabbit morulae. Journal of Reproduction and Fertility. 65 (2), 483-487 (1982).
  50. Vanderzwalmen, P., et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Human Reproduction. 17 (3), 744-751 (2002).
  51. Lavara, R., Baselga, M., Vicente, J. S. Does storage time in LN2 influence survival and pregnancy outcome of vitrified rabbit embryos?. Theriogenology. 76 (4), 652-657 (2011).
check_url/kr/58055?article_type=t

Play Video

Cite This Article
Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., Vicente, J. S. Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. J. Vis. Exp. (147), e58055, doi:10.3791/58055 (2019).

View Video