Summary

Syntes och karakterisering av 1,2-Dithiolane modifierade själv montering peptider

Published: August 20, 2018
doi:

Summary

Ett protokoll för syntesen av en 1,2-dithiolane modifierade peptid och karakterisering av supramolekylär strukturer som härrör från peptiden självmontering.

Abstract

Denna rapport fokuserar på syntesen av en N-terminalen 1,2-dithiolane modifierade själv montering peptid och karakterisering av den resulterande monterade själv supramolekylär strukturer. Syntetiska rutten tar fördel av fasta fasen peptidsyntesen med på-harts kopplingen av dithiolane föregångaren molekyl, 3-(acetylthio) -2-(acetylthiomethyl) propansyra syra och den mikrovågsugn-assisted thioacetate deprotection av peptiden N-terminalen innan slutlig klyvning från kådan ge den 1,2-dithiolane modified peptid. Efter högpresterande vätskekromatografi (HPLC) rening av 1,2-dithiolane peptiden, härrör från nucleating kärnan av Aβ peptiden är associerad med Alzheimers sjukdom, visas peptiden att själv montera in cross-β amyloid fibrerna. Protokoll att karakterisera amyloid fibrerna av Fourier-transform infraröd spektroskopi (FT-IR), cirkulärdichroism spektroskopi (CD) och transmissionselektronmikroskopi (TEM) presenteras. Metoderna för N-terminala modifiering med en 1,2-dithiolane del till välkarakteriserad själv montering peptider kan nu utforskas som modellsystem att utveckla efter montering modifiering strategier och utforska dynamiska kovalent kemi på supramolekylär peptid nanofiber ytor.

Introduction

Den robusta peptidbindning bildas kemi deltar i fasta fasen peptidsyntesen och möjligheten att styra sekvensen längd och sammansättning gör de peptider som själv monterar i supramolekylär strukturer ett kraftigt utforskade fält. De faktorer som styr och stabilisera peptid själv monterade strukturer, däribland sidokedjan sterisk och elektrostatisk interaktioner, väte bindning och hydrofoba effekter1, fungera som en uppsättning designregler. Som forskningen om dessa grundläggande designregler fortsätter att göra framsteg, innefattar det logiska nästa steget i peptid självmontering utöka mångfalden av peptid-baserad strukturer och funktioner. Samtidigt självmonterande peptider är en mångsidig biomaterial som har använts för många biomedicinska tillämpningar av tuning peptid sekvens eller församlingen villkor2,3,4, utveckling av strategier för efter montering ändringar peptid nanofibrer5,6,7,8,9 är fortfarande ett relativt outforskat område.

Dynamiska disulfid utbyte och thiol kemi vid ytan av supramolekylär strukturer är ett område som har potential att ge nya och funktionella biomaterial. Införlivandet av 1,2-dithiolane beståndsdelarna (vanligen ett derivat av liponsyra (la) eller asparagusic syra (aa)) har rapporterats i Liposom system10,11, block sampolymerer12,13, och som organisera ankare ytor14,15. Häri, rapporterar vi syntes och karakterisering av en egen montering peptid som härrör från nucleating kärnan av Aβ peptiden är associerad med Alzheimers sjukdom som ändras vid N-terminalen med en 1,2-dithiolane funktionell grupp16, 17. Den resulterande Supramolekylära fibrerna nu fungera som en experimentell plattform att studera disulfid-exchange och thiol reaktiviteten på supramolekylär ytan av amyloid fibrer18.

Protocol

1. Sammanfattning och rening av 1,2-Dithiolane modifierade peptid Syntes av dithiolane föregångare, 3-(acetylthio) -2-(acetylthiomethyl) propansyra syra19. Tillsätt 1 g 3-bromo – 2-(bromomethyl) propionsyra (1 motsv.) upplöst i minimal mängd 1 M NaOH (cirka 4 mL) till en 25 mL rund botten reaktionskolven under omrörning vid 55 ° C. Försegla reaktionskolven med en septa och placera under kväveatmosfär. Bered en lösning som innehåller 1.49 …

Representative Results

Bortsett från den inledande one-step syntesen av dithiolane föregångaren molekyl sker resten av 1,2-dithiolane modified peptidsyntesen på fasta stöd (figur 1A). Omvandlingen av 3-bromo – 2-(bromomethyl) propionsyra till 3-(acetylthio) -2-(acetylthiomethyl) propansyra syra, dithiolane föregångare, bekräftas av 1H och 13C NMR (figur 1B och C) innan den är kopplad till den fria N-termi…

Discussion

Artikeln detaljerna i både syntes och rening av en N-terminal 1,2-dithiolane modified själv montering peptid och karakterisering av de resulterande Supramolekylära strukturerna. Syntesen av 1,2-dithiolane peptiden redovisas här har fördelar, inklusive en one-step syntes för att producera dithiolane föregångare, 3-(acetylthio) -2-(acetylthiomethyl) propansyra syra och på-kådan mikrovågsugn deprotection reaktion av den föregångaren thioacetate skydda gruppen för att ge den oxiderade 1,2-dithiolane biexponenti…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Författarna vill tacka Dr B. Ellen Scanley för hennes teknisk utbildning och hjälp med TEM vid Connecticut State Colleges och universitet (CSCU) Center för nanoteknologi och Dr Ishita Mukerji vid Wesleyan University för tillgång till hennes CD spektrofotometer. Det arbete som rapporterats var delvis stöds av den Science Institute vid Fairfield University, NASA Connecticut utrymme bevilja konsortiet, och National Science Foundation under Grant nummer CHE-1624774.

Materials

Rink amide MBHA resin, high load Gyros Protein Technologies RAM-5-HL Avoid contact with skin and eyes; do not inhale
N,N-Dimethylformamide Fisher Scientific D119-4 Flammable liquid and vapor; irritating to eyes and skin; Use personal protective equipment; keep away from open flame
Fmoc-L-Val-OH Gyros Protein Technologies FLA-25-V Wear personal protective equipment; do not inhale
Fmoc-L-Leu-OH Gyros Protein Technologies FLA-25-L Wear personal protective equipment; do not inhale
Fmoc-L-Lys(Boc)-OH Gyros Protein Technologies FLA-25-KBC Wear personal protective equipment; do not inhale
Fmoc-L-Phe-OH Gyros Protein Technologies FLA-25-F Wear personal protective equipment; do not inhale
Fmoc-L-Ala-OH Gyros Protein Technologies FLA-25-A Wear personal protective equipment; do not inhale
Fmoc-L-Gln(Trt)-OH Gyros Protein Technologies FLA-25-QT Wear personal protective equipment; do not inhale
N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate Gyros Protein Technologies 26432 Causes skin, eye and respiratory irritation; do not inhale; use under hood or in well ventilated area
0.4 M N-methylmorpholine in DMF Gyros Protein Technologies PS3-MM-L highly flammable; wear personal protective equipment; keep away from heat and keep container tightly closed; do not inhale or swallow; wash skin thoroughly after handling
20% piperidine in DMF Gyros Protein Technologies PS3-PPR-L Causes severe eye and skin burns; Flammable Liquid and vapor; Do not inhale
dichloromethane Fisher Scientific D37-4 May cause cancer; Do not inhale; Wear personal protective equipment; use under hood only; if contacted rise with water for at least 15 minutes and obtain medical attention
acetonitrile Fisher Scientific A998-4 Flammable; irritating to eyes; Use personal protective equipment; Use only under a fume hood; keep away from open flame or hot surface; if contacted rinse wiith water for at least 15 minutes and obtain medical attention
trifluoroacetic acid Fisher Scientific A116-50 Causes severe burns; do not inhale; harmful to aquatic life; use personal protective equipment; use only under fume hood; if contacted rinse with water for at least 15 minutes and obain immediate medical attention
4% uranyl acetate Electron Microscopy Sciences 22400-4 Do not inhale; harmful to aquatic life
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid Acros Organics AC172571000 Do not inhale; use outdoors or in well-ventilated area
nitrogen Gas TechAir Contents under pressure, may explode if heated
3-bromo-2-(bromomethyl)propionic acid Alfa Aesar AAA1963014 Do not inhale; causes irritation to skin and eyes; corrosive
sodium hydroxide Fisher Scientific S318-100 Use personal protective equipment; use only under fume hood; if contact rinse area for at least 15 minutes and obtain medical attention
potassium thioacetate Acros Organics AC221300250 Causes skin and eye irritation; do not inhale; use personal protective equipment
sulfuric acid Fisher Scientific SA213 Causes burns; keep away from water; keep away from combustible material; do not inhale; use personal protective equipment; if contact rinse area for at least 15 minutes and obtain medical attention
chloroform-d Acros Organics AC320690075 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
chloroform Fisher Scientific C298-4 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
N,N-diisopropylethylamine Acros Organics AC367841000 Highly flammable; harmful to aquatic life; wear personal protective equipment; do not swallow
ammonium hydroxide Fisher Scientific A669S-500 Corrosive; do not inhale
methanol Fisher Scientific A452-4 Flammable liquid and vapor; use personal protective equipment; do not inhale; If contact rinse area for at least 15 minutes and obtain medical attention
triisopropylsilane Sigma Aldrich 233781 Flammable; use personal proctective safety equipment; keep container tightly closed
diethyl ether Fisher Scientific E138-1 Extremely flammable; Irritating to skin and eyes; Use personal protective equipment
2,5-dihydroxybenzoic acid Sigma Aldrich 39319-10x10MG-F do not inhale; irritating to skin and eyes
alpha-cyano-4-hydroxycinnamic acid Alfa Aesar AAJ67635EXK
c18 zip-tip Millipore ZTC18S096
tris(2-carboxyethyl) phospine hydrochloride Thermo Scientific PI20490
silica gel 60 F254 coated aluminum-backed TLC sheets EMD Millipore 1.05549.0001
Thin walled Precision NMR tubes Bel-Art 663000585 5mm O.D.
All-plastic Norm-Ject syringes Air Tite AL10
single-use needle BD PrecisionGlide BD 305185 used needles get disposed on in sharps waste container
disposable fritted syringe Torviq SF1000LL 10mL fritted syringes were used in the report, but larger syringes are avaibale if needed for larger scale synthesis.
carbon grid Ted Pella, Inc. CF200-CU Make sure to prepare samples and staining on the carbon grid side, not the shiny copper side of grid
self-closing tweezers Electron Microscopy Sciences 78318-3X very sharp tips, length: 120 mm
0.1 mm short path length cell Starna Cells, Inc. 20/C-Q-0.1 Fragile
10mL Vessel Caps CEM 909210
10mL Pressure Vessels CEM 908035
Aeris Semi-Prep HPLC column Phenomenex 00F-4632-N0 150 x 10mm
cell holder Starna Cells, Inc. CH-2049 Needed when using short pathlength cells
PS3 peptide synthesizer Gyros Protein Technologies
DiscoverSP Microwave Reactor CEM
centrifuge HERMLE Z 206 A used a fixed 6×50 mL rotor
HPLC Shimadzu UV Detector
nuclear magnetic resonance spectrometer Avance, Bruker 300 MHz
MALDI-TOF mass spectrometer Axima Confidence, Shimadzu
lyophilizer Millrock Technology BT85A
Fourier-Transform Infrared Spectrometer Alpha Tensor, Bruker
Transmission Electron Microscope Tecnai Spirit, FEI Used with Gatan Orius Fiberoptic CCD digital camera. Accessed at CSCU Center for Nanotechnology
Circular Dichroism Spectropolarimeter J-810, JASCO Used with a six-cell Peltier temperature controller. Accessed at Wesleyan University.

References

  1. Wang, J., Liu, K., Xing, R., Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chemical Society Reviews. 45, 5589-5604 (2016).
  2. Dong, R., et al. Functional supramolecular polymers for biomedical applications. Advanced Materials. 27, 498-526 (2015).
  3. Edwards-Gayle, C. J. C., Hamley, I. W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry. 15, 5867-5876 (2017).
  4. Goor, O. J. G. M., Hendrikse, S. I. S., Dankers, P. Y. W., Meijer, E. W. From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews. 46, 6621-6637 (2017).
  5. DiMaio, J. T. M., Doran, T. M., Ryan, D. M., Raymond, D. M., Nilsson, B. L. Modulating supramolecular peptide hydrogel viscoelasticity using biomolecular recognition. Biomacromolecules. 18, 3591-3599 (2017).
  6. DiMaio, J. T. M., Raymond, D. M., Nilsson, B. L. Display of functional proteins on supramolecular peptide nanofibrils using a split-protein strategy. Organic and Biomolecular Chemistry. 15, 5279-5283 (2017).
  7. Mahmoud, Z. N., Gunnoo, S. B., Thomson, A. R., Fletcher, J. M., Woolfson, D. N. Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials. 32, 3712-3720 (2011).
  8. Petkau-Milroy, K., Uhlenheuer, D. A., Spiering, A. J. H., Vekemans, J. A. J. M., Brunsveld, L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chemical Science. 4, 2886-2891 (2013).
  9. Li, A., et al. Neurofibrillar tangle surrogates: Histone H1 binding to patterned phosphotyrosine peptide nanotubes. 생화학. 53, 4225-4227 (2014).
  10. Sadownik, A., Stefely, J., Regen, S. L. Polymerized liposomes formed under extremely mild conditions. Journal of the American Chemical Society. 108, 7789-7791 (1986).
  11. Zhang, N., et al. ATN-161 Peptide functionalized reversibly cross-linked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Molecular Pharmaceutics. 14, 2538-2547 (2017).
  12. Margulis, K., et al. Formation of polymeric nanocubes by self-assembly and crystallization of dithiolane-containing triblock copolymers. Angewandte Chemie International Edition. 56, 16357-16362 (2017).
  13. Zhang, X., Waymouth, R. 1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. Journal of the American Chemical Society. 139, 3822-3833 (2017).
  14. Sakia, N., Matile, S. Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. Journal of the American Chemical Society. 133, 18542-18545 (2011).
  15. Uji, H., Morita, T., Kimura, S. Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Physical Chemistry Chemical Physics. 15, 757-760 (2013).
  16. Liang, C., Ni, R., Smith, J. E., Childers, W. S., Mehta, A. K., Lynn, D. G. Kinetic intermediates in amyloid assembly. Journal of the American Chemical Society. 136, 15116-15149 (2014).
  17. Smith, J. E., et al. Defining the dynamic conformational network of cross-β peptide assembly. Israel Journal of Chemistry. 55, 763-769 (2015).
  18. Black, S. P., Sanders, J. K. M., Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chemical Society Reviews. 43, 1861-1872 (2014).
  19. Vendetti, A., et al. Dihydroasparagusic acid: Antioxidant and tyrosinase inhibitory activities and improved synthesis. Journal of Agricultural and Food Chemistry. 61, 6848-6855 (2013).
  20. Stawikowski, M., Fields, G. B. Introduction to peptide synthesis. Current Protocols in Protein Science. 26, (2002).
  21. Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 44, 2536-2541 (2011).
  22. Lafont, U., van Zeijl, H., van der Zwaag, S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polydisulfide-based thermosets. ACS Applied Materials and Interfaces. 4, 6280-6288 (2012).
  23. Komaromy, D., Stuart, M. C. A., Santiago, G. M., Tezcan, M., Krasnikov, V. V., Otto, S. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. Journal of the American Chemical Society. 139, 6234-6241 (2017).
  24. McAvery, K. M., Guan, B., Fortier, C. A., Tarr, M. A., Cole, R. B. Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry. 22, 659-669 (2011).
  25. Krimm, S., Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry. 38, 181-364 (1986).
  26. Halverson, K. J., Sucholeiki, I., Ashburn, T. T., Lansbury, P. T. Location of β-sheet-forming sequences in amyloid proteins by FTIR. Journal of the American Chemical Society. 113, 6701-6703 (1991).
  27. Greenfield, N., Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein confirmation. 생화학. 8, 4108-4116 (1969).
  28. . ImageJ Available from: https://imagej.nih.gov/ij (2016)
  29. Roy, S., Shinde, S., Hamilton, G. A., Hartnett, H. E., Jones, A. K. Artificial [FeFe]-hydrogenase: On resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. European Journal of Inorganic Chemistry. 2011, 1050-1055 (2011).
  30. Van Duinen, S. G., Castano, E. M., Prelli, F., Bots, G. T. A. B., Luyendijk, W., Frangione, B. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 84, 5991-5994 (1987).
  31. Barth, A. The infrared absorption of amino acid sidechains. Progress in Biophysics and Molecular Biology. 74, 141-173 (2000).
  32. Jayaraman, M., et al. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing Huntingtin fragments. Journal of Molecular Biology. 415, 881-899 (2012).
check_url/kr/58135?article_type=t

Play Video

Cite This Article
Neves, R., Stephens, K., Smith-Carpenter, J. E. Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. J. Vis. Exp. (138), e58135, doi:10.3791/58135 (2018).

View Video