Summary

Oppnå moderat press i forseglet fartøy bruker tørris som en Solid CO2

Published: August 17, 2018
doi:

Summary

Her presenterer vi en protokoll for å utføre reaksjoner i enkel reaksjon skip under lav til moderat presset av CO2. Reaksjoner kan utføres i en rekke skip ved administrasjon av karbondioksid i form av tørris, uten behov for dyre eller utdype utstyr eller set-ups.

Abstract

Her vises en generell strategi for å utføre reaksjoner under mild til moderat CO2 presset med tørris. Denne teknikken obviates behovet for spesialisert utstyr å oppnå beskjeden press, og kan også brukes til å oppnå høyere press i mer spesialisert utstyr og kraftigere reaksjon fartøy. På slutten av reaksjonen, kan hetteglass være lett trykkavlastet av åpningen ved romtemperatur. I eksemplet stede fungerer CO2 som både en antatte dirigere gruppe så vel som en måte å passivate Amin underlag, og dermed hindre oksidasjon under organometalliske reaksjonen. I tillegg legges lett, er dirigere gruppen også fjernet under vakuum, obviating behovet for omfattende rensing å fjerne gruppen Regi. Denne strategien kan den lettvinte γ-C(sp3)-H arylation av alifatisk aminer og kan brukes til en rekke andre Amin-baserte reaksjoner.

Introduction

Bruk av gass forbindelser i kjemiske reaksjoner krever spesialisert utstyr og prosedyrer1,2. På benken skala, kan noen gasser legges direkte fra en tank med en høytrykk regulator3. En alternativ metode er å kondensere gassen under kryogene forhold4,5. Nyttige, krever disse strategiene bruk av spesialiserte press reaktorer med ventiler, som kan være kostnadseffektivt uoverkommelige for å kjøre mange reaksjoner parallelt. Derfor kan dette betydelig redusere hastigheten på som reaksjon screening kan fortsette. Derfor har kjemikere funnet det ønskelig å introdusere disse forbindelsene med alternative metoder. Ammoniakk kan legges til reaksjoner med forskjellige ammonium carboxylate salter, drar nytte av den svake likevekten mellom disse salter og gratis ammoniakk6. Overføre hydrogenering er en viktig strategi for reduksjon reaksjoner på olefins, karbonyl og nitro grupper som omgår bruk av brennbare hydrogengass med forbindelser som ammonium formiat eller hydrazine som bærere av H27. En annen gass rundt i dette området er karbonmonoksid8 -CO kan være generert i situ etter frigjøringen fra metall karbonyl komplekser9,10, eller alternativt det kan genereres ved decarbonylation fra kilder som formates og formamides11,12,13 eller kloroform14,15.

En gass som ikke har hatt betydelig utvikling i denne forbindelse er karbondioksid16. En årsak til dette er at mange transformasjoner som involverer CO2 også krever høye temperaturer og trykk, og dermed blir automatisk henvist til spesialiserte reaktorer17,18. Siste innsats for å utvikle mer reaktiv katalysatorer, imidlertid, lettet kjører mange av disse reaksjonene under atmosfærisk trykk CO219,20,21,22. Vi har nylig oppdaget en reaksjon som karbondioksid kan brukes å megle γ-C (sp3)-H arylation alifatisk aminer23. Denne strategien var ventet å kombinere fordelene med en dirigere gruppen tilnærming inkludert amid24,25,26,27,28sulfonamide 29 , 30 , 31 , 32, thiocarbonyl33,34eller hydrazone35-basert regi grupper (kjemiske robusticity), med enkelt en forbigående dirigere gruppe (redusert trinn økonomi)36, 37,38,39.

Selv om reaksjonen kan oppstå under lufttrykk CO2, redusere behovet for en Schlenk oppsett til skjermen reaksjoner viste uoverkommelig. Videre økende press litt førte til forbedret reaksjon avkastning, men enkelt oppnås ikke ved å bruke Schlenk:. Vi søkte derfor en alternativ strategi, og senere identifisert som tørris kan enkelt brukes som en solid CO2 som kan legges til en rekke reaksjon fartøy å introdusere den nødvendige mengden av karbondioksid å oppnå moderat Press (figur 1). Selv om underutilized i syntese, er en lignende strategi ganske vanlig som metode for å generere flytende CO2 for kromatografi og utvinning programmer40,41,42,43, 44. Bruker denne strategien tillatt vår gruppe å raskt skjermen stort antall reaksjoner i parallell, mens muligheten til å tilgang moderat CO2 Trykk på mellom 2-20 atmosfærer var avgjørende for å forbedre avkastningen av reaksjoner. Under disse forholdene, kan både primær (1°) og videregående (2°) aminer være arylated med elektron rike og elektron dårlig aryl halides.

Protocol

FORSIKTIG: 1) følgende protokoller har vært ansett trygt gjennom gjentatte forsøk. Men forsiktighet bør utvises ved tetting ampuller, gjennom reaksjonen, og spesielt når åpning reaksjoner, som inhomogeneity i reaksjonen ampuller fører til utstyrssvikt. Ampuller bør inspiseres for fysiske defekter før bruk. Ampuller plasseres bak noen form for blast skjold eller hette sash straks tetting å forhindre hendelser skal hetteglass mislykkes. 2) selv om det er liten sjanse for kvelning på grunn av små mengder av CO<s…

Representative Results

Etter disse protokollene er det mulig å lade reaksjon ampuller med en passende mengde karbondioksid å oppnå kjemiske reaksjoner som krever CO2 atmosfærer. Trykket i trinn 1 er beregnet til ca 3 atmosfærer (se diskusjon for fastsettelse av denne verdien), men på grunn av delvis solvation, observerte trykket er i 2 atmosfærer ved romtemperatur, og skal ca 2,6 atmosfærer under reaksjonen forhold. Derfor under forholdene i trinn 1, kan 2-Methyl-4-fenyl-butanamine fås i 69%…

Discussion

Bruke van der Waals ligning av staten, kan omtrentlig trykket av disse systemene være beregnede45

EQ. 1:Equation

Under forholdene i protokollen 1, kan vi anta 26.3 mg av CO2 gir n = 5.98 x 10-4 mols

Equation 1b

Som et grovt anslag tyder de…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne ønsker å erkjenne oppstart finansiering fra The University of Toledo, samt midler fra American Chemical Society’s Herman Frasch Foundation delvise støtte for dette arbeidet. Mr. Thomas Kina er anerkjent for hans hjelp med å utvikle en egnet manometer for å måle reaksjon presset. Mr. Steve Modar er takket for nyttig diskusjoner.

Materials

7.5 mL Sample Vial with Screw Cap (Thermoset) Qorpak GLC-00984 Can be reused.
40 mL Sample Vial with Screw Cap (Thermoset) Qorpak GLC-01039 Can be reused.
Pressure Tube, #15 Thread, 7" Long, 25.4 mm O.D. Ace Glass 8648-06 Can be reused.
Pie-Block for 2 Dram Vials ChemGlass CG-1991-P14 Can be reused.
Pie-Block for 10 Dram Vials ChemGlass CG-1991-P12 Can be reused.
3.2 mm PTFE Disposable Stir Bars Fisher 14-513-93 Can be reused.
C-MAG HS 7 Control Hotplate IKA 20002695
Analytical Weighing Balance Sartorius QUINTIX2241S
Double-Ended Micro-Tapered Spatula Fisher Scientific 21-401-10
Hei-VAP Advantage – Hand Lift Model with G5 Dry Ice Condenser Rotary Evaporator Heidolph 561-01500-00
Bump Trap 14/20 Joint ChemGlass CG-1322-01
tert-Amyl amine Alfa Aesar B24639-14 Used as received.
2-Methyl-N-(3-methylbenzyl)butan-2-amine N/A N/A Prepared from reductive amination of tert-amyl amine and 3-tolualdehyde in the presence of sodium borohydride in methanol.
Palladium Acetate Chem-Impex International, Inc. 4898 Used as received.
Silver Trifluoroacetate Oakwood Chemicals 007271 Used as received.
Phenyl Iodide Oakwood Chemicals 003461 Used as received.
Acetic Acid Fisher Chemical A38 Used as received.
1,1,1,3,3,3-Hexafluoroisopropanol Oakwood Chemicals 003409 Used as received.
Deionized Water Obtained from in-house deionized water system.
Dry Ice Carbonic Enterprises Dry Ice Inc. Non-food grade dry ice.
Concentrated Hydrochloric Acid Fisher Chemical A144SI Diluted to a 1.2 M solution prior to use.
Diethyl Ether, Certified Fisher Chemical E138 Used as received.
Hexanes, Certified ACS Fisher Chemical H292 Used as received.
Saturated Ammonium Hydroxide Fisher Chemical A669 Used as received.
Dichloromethane Fisher Chemical D37 Used as received.
Sodium Sulfate, Anhydrous Oakwood Chemicals 044702 Used as received.
250 mL Separatory Funnel Prepared in-house by staff glassblower.
100 mL Round Bottom Flask Prepared in-house by staff glassblower.
Scientific Disposable Funnel Caplugs 2085136030
Borosilicate Glass Scintillation Vials, 20 mL Fisher Scientific 03-337-15
5 mm O.D. Thin Walled Precision NMR Tubes Wilmad 666000575
Chloroform-d Cambridge Isotope Laboratories, Inc. DLM-7 Used as received.

References

  1. Verboom, W. Selected Examples of High-Pressure Reactions in Glass Microreactors. Chemical Engineering and Technology. 32 (11), 1695-1701 (2009).
  2. Schettino, V., Bini, R. Constraining Molecules at the Closest Approach: Chemistry at High Pressure. Chemical Society Reviews. 36, 869-880 (2007).
  3. Hemminger, O., Marteel, A., Mason, M. R., Davies, J. A., Tadd, A. R., Abraham, M. A. Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 3. Evaluation of Solvent Effects. Green Chemistry. 4, 507-512 (2002).
  4. Mo, F., Dong, G. Regioselective Ketone α-Alkylation with Simple Olefins via Dual Activation. Science. 345 (6192), 68-72 (2014).
  5. Schultz, A. G., Kirincich, S. J., Rahm, R. Asymmetric Organic Synthesis. Preparation and Birch Reduction-Alkylation of 2-Methyl-3,4-Dihydroisoquinolin-1-ones. Tetrahedron Letters. 36 (26), 4551-4554 (1995).
  6. Dong, L., Aleem, S., Fink, C. A. Microwave-Accelerated Reductive Amination Between Ketones and Ammonium Acetate. Tetrahedron Letters. 51 (39), 5210-5212 (2010).
  7. Wang, D., Astruc, D. The Golden Age of Transfer Hydrogenation. Chemical Reviews. 115 (13), 6621-6686 (2015).
  8. Morimoto, T., Kakiuchi, K. Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. Angewandte Chemie International Edition in English. 43 (42), 5580-5588 (2004).
  9. Iranpoor, N., Firouzabadi, H., Motevalli, S., Talebi, M. Palladium-Free Aminocarbonylation of Aryl, Benzyl, and Styryl Iodides and Bromides by Amines Using Mo(CO)6 and Norbornadiene. Tetrahedron. 69 (1), 418-426 (2013).
  10. Ren, W., Yamane, M. Mo(CO)6-Mediated Carbamoylation of Aryl Halides. Journal of Organic Chemistry. 75 (24), 8410-8415 (2010).
  11. Wang, H., Dong, B., Wang, Y., Li, J., Shi, Y. A Palladium-Catalyzed Regioselective Hydroesterification of Alkenylphenols to Lactones with Phenyl Formate as CO Source. Organic Letters. 16 (1), 186-189 (2014).
  12. Zhang, Y., Chen, J. -. L., Chen, Z. -. B., Zhu, Y. -. M., Ji, S. -. J. Palladium-Catalyzed Carbonylative Annulation Reactions Using Aryl Formate as a CO Source: Synthesis of 2-Substituted Indene-1,3(2H)-Dione Derivatives. Journal of Organic Chemistry. 80 (21), 10643-10650 (2015).
  13. Wan, Y., Alterman, M., Larhed, M., Hallberg, A. Dimethylformamide as a Carbon Monoxide Source in Fast Palladium-Catalyzed Aminocarbonylations of Aryl Bromides. Journal of Organic Chemistry. 67 (17), 6232-6235 (2002).
  14. Gockel, S. N., Hull, K. L. Chloroform as a Carbon Monoxide Precursor: In or Ex Situ Generation of CO for Pd-Catalyzed Aminocarbonylations. Organic Letters. 17 (13), 3236-3239 (2015).
  15. Zhao, H., Du, H., Yuan, X., Wang, T., Han, W. Iron-Catalyzed Carbonylation of Aryl Halides with Arylborons Using Stoichiometric Chloroform as the Carbon Monoxide Source. Green Chemistry. 18, 5782-5787 (2016).
  16. Chen, P., Xu, C., Yin, H., Gao, X., Qu, L. Shock Induced Conversion of Carbon Dioxide to Few Layer Graphene. Carbon. , 471-476 (2017).
  17. Iijima, T., Yamaguchi, T. Efficient Regioselective Carboxylation of Phenol to Salicylic Acid with Supercritical CO2 in the Presence of Alumnium Bromide. Journal of Molecular Catalysis A: Chemical. 295 (1-2), 52-56 (2008).
  18. Jevtovikj, I., Manzini, S., Hanauer, M., Rominger, F., Schaub, T. Investigations on the Catalytic Carboxylation of Olefins with CO2 Towards α, β-Unsaturated Carboxylic Acid Salts: Characterization of Intermediates and Ligands as well as Substrate Effects. Dalton Transactions. 44, 11083-11094 (2015).
  19. Juliá-Hernández, F., Moragas, T., Cornella, J., Martin, R. Remote Carboxylation of Halogenated Aliphatic Hydrocarbons with Carbon Dioxide. Nature. 545, 84-88 (2017).
  20. North, M., Pasquale, R. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2. Angewandte Chemie International Edition. 48 (16), 2946-2948 (2009).
  21. Yeung, C. S., Dong, V. M. Beyond Aresta’s Complex: Ni- and Pd-Catalyzed Organozinc Coupling to CO2. Journal of the American Chemical Society. 130 (25), 7826-7827 (2008).
  22. Zhu, D. -. Y., Fang, L., Han, H., Wang, Y., Xia, J. -. B. Reductive CO2 Fixation via Tandem C-C and C-N Bond Formation: Synthesis of Spiro-Indopyrrolidines. Organic Letters. 19 (16), 4259-4262 (2017).
  23. Kapoor, M., Liu, D., Young, M. C. Carbon Dioxide Mediated C(sp3)–H Arylation of Amine Substrates. J. Am. Chem. Soc. , (2018).
  24. Zhang, Y. -. F., Zhao, H. -. W., Wang, H., Wei, J. -. B., Shi, Z. -. J. Readily Removable Directing Group Assisted Chemo- and Regioselective C(sp3)-H Activation by Palladium Catalysis. Angewandte Chemie International Edition. 54 (46), 13686-13690 (2015).
  25. He, G., Chen, G. A Practical Strategy for the Structural Diversification of Aliphatic Scaffolds Through the Palladium-Catalyzed Picolinamide-Directed Remote Functionalization of Unactivated C(sp3)-H Bonds. Angewandte Chemie International Edition. 50 (22), 5192-5196 (2011).
  26. Nack, W. A., Wang, X., Wang, B., He, G., Cheng, G. Palladium-Catalyzed Picolinamide-Directed Iodination of Remote ortho-C-H Bonds of Arenes: Synthesis of Tetrahydroquinolines. Beilstein Journal of Organic Chemistry. 12, 1243-1249 (2016).
  27. Feng, P., Li, M., Ge, H. Room Temperature Palladium-Catalyzed Decarboxylative ortho-Acylation of Acetanilides with α-Oxocarboxylic Acids. Journal of the American Chemical Society. 132 (34), 11898-11899 (2010).
  28. Coomber, C. E., Benhamou, L., Bučar, D. -. K., Smith, P. D., Porter, M. J., Sheppard, T. D. Silver-Free Palladium-Catalyzed C(sp3)-H Arylation of Saturated Bicyclic Amine Scaffolds. Journal of Organic Chemistry. 83 (5), 2495-2503 (2018).
  29. Mei, T. -. S., Wang, X., Yu, J. -. Q. Pd(II)-Catalyzed Amination of C-H Bonds Using Single-Electron or Two-Electron Oxidants. Journal of the American Chemical Society. 131 (31), 10806-10807 (2009).
  30. Xie, W., Yang, J., Wang, B., Li, B. Regioselective Ortho Olefination of Aryl Sulfonamide via Rhodium-Catalyzed Direct C-H Bond Activation. Journal of Organic Chemistry. 79 (17), 8278-8287 (2014).
  31. Rodriguez, N., Romero-Revilla, J. A., Fernández-Ibáñez, M. &. #. 1. 9. 3. ;., Carretero, J. C. Palladium-Catalyzed N-(2-pyridyl)sulfonyl-Directed C(sp3)-H γ-Arylation of Amino Acid Derivatives. Chemical Science. 4, 175-179 (2013).
  32. Zheng, Y., Song, W., Zhu, Y., Wei, B., Xuan, L. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group. Journal of Organic Chemistry. 83 (4), 2448-2454 (2018).
  33. Jain, P., Verma, P., Xia, G., Yu, J. -. Q. Enantioselective Amine α-Functionalization Via Palladium-Catalysed C-H Arylation of Thioamides. Nature Chemistry. 9, 140-144 (2017).
  34. Tran, A. T. Practical Alkoxythiocarbonyl Auxiliaries for Ir(I)-Catalyzed C-H Alkylation of Azacycles. Angewandte Chemie International Edition. 56 (35), 10530-10534 (2017).
  35. Huang, Z., Wang, C., Dong, G. A Hydrazone-Based exo-Directing Group Strategy for β-C-H Oxidation of Aliphatic Amines. Angewandte Chemie International Edition. 55 (17), 5299-5303 (2016).
  36. Xu, Y., Young, M. C., Wang, C., Magness, D. M., Dong, G. Catalytic C(sp3)-H Arylation of Free Primary Amines via an in situ Generated Exo-Directing Group. Chemie International Edition. 55 (31), 9084-9087 (2016).
  37. Liu, Y., Ge, H. Site-Selective C-H Arylation of Primary Aliphatic Amines Enabled by a Catalytic Transient Directing Group. Nature Chemistry. 9, 26-32 (2017).
  38. Wu, Y., Chen, Y. -. Q., Liu, T., Eastgate, M. D., Yu, J. -. Q. Pd-Catalyzed γ-C(sp3)-H Arylation of Free Amines Using a Transient Directing Group. Journal of the American Chemical Society. 138 (44), 14554-14557 (2016).
  39. Yada, A., Liao, W., Sato, Y., Murakami, M. Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp3)-H Bond Activation. Angewandte Chemie International Edition. 56 (4), 1073-1076 (2017).
  40. Baldwin, B. W., Kuntzleman, T. S. Liquid CO2 in Centrifuge Tubes: Separation of Chamazulene from Blue Tansy (Tanacetum annum) Oil via Extraction and Thin-Layer Chromatography. Journal of Chemical Education. 95 (4), 620-624 (2018).
  41. McKenzie, L. C., Thompson, J. E., Sullivan, R., Hutchison, J. E. Green Chemical Processing in the Teaching Laboratory: A Convenient Liquid CO2 Extraction of Natural Products. Green Chemistry. 6, 355-358 (2004).
  42. Hudson, R., Ackerman, H. M., Gallo, L. K., Gwinner, A. S., Krauss, A., Sears, J. D., Bishop, A., Esdale, K. N., Katz, J. L. CO2 Dry Cleaning: A Benign Solvent Demonstration Accessible to K-8 Audiences. Journal of Chemical Education. 94, 480-482 (2017).
  43. Barcena, H., Chen, P. An Anesthetic Drug Demonstration and an Introductory Antioxidant Activity Experiment with "Eugene, the Sleepy Fish.&#34. Journal of Chemical Education. 93, 202-205 (2016).
  44. Bodsgard, B. R., Lien, N. R., Waulters, Q. T. Liquid CO2 Extraction and NMR Characterization of Anethole from Fennel Seed: A General Chemistry Laboratory. Journal of Chemical Education. 93, 397-400 (2016).
  45. Fishbane, P. M., Gasiorowicz, S. G., Thornton, S. T. . Physics for Scientists and Engineers. , (2005).
  46. Rumpf, B., Xia, J., Maurer, G. Solubility of Carbon Dioxide in Aqueous Solutions Containing Acetic Acid or Sodium Hydroxide in the Temperature Range from 313 to 433 K and at Total Pressures up to 10 MPa. Industrial & Engineering Chemistry Research. 37, 2012-2019 (1998).
  47. Luo, J., Larrosa, I. C-H Carboxylation of Aromatic Compounds Through CO2 Fixation. ChemSusChem: Chemistry & Sustainability, Energy & Materials. 10, 3317-3332 (2017).
  48. Manjolinho, F., Arndt, M., Gooßen, K., Gooßen, L. J. Catalytic C-H Carboxylation of Terminal Alkynes with Carbon Dioxide. ACS Catalysis. 2, 2014-2021 (2012).
  49. Banerjee, A., Dick., G. R., Yoshino, T., Kanan, M. W. Carbon Dioxide Utilization via Carbonate-Promoted C-H Carboxylation. Nature. 531, 215-219 (2016).
  50. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P., Cohen, S. M. Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework. Inorganic Chemistry. 54, 6821-6828 (2015).
  51. Chabolla, S. A., Yang, J. Y. For CO2 Reduction, Hydrogen-Bond Donors Do the Trick. ACS Central Science. 4, 315-317 (2018).
  52. Kim, D., Kley, C. S., Li, Y., Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2-C3 Products. Proceedings of the National Academy of Sciences of the United States of America. , C2-C3 (2017).
  53. Liu, Q., Wu, L., Jackstell, R., Beller, M. Using carbon dioxide as a building block in organic synthesis. Nature Communications. 6, 5933-5945 (2015).
  54. Hâncu, D., Green, J., Beckman, E. J. H2O2 in CO2 Sustainable Production and Green Reactions. Accounts of Chemical Research. 35, 757-764 (2002).
  55. Ballivet-Tkatchenko, D., Camy, S., Condoret, J. S., Lichtofouse, E., Scwarzbauer, J., Robert, D. Carbon Dioxide, a Solvent and Synthon for Green Chemistry. Environmental Chemistry. , 541-552 (2005).
  56. Hyatt, J. A. Liquid and Supercritical Carbon Dioxide as Organic Solvents. Journal of Organic Chemistry. 49, 5097-5101 (1984).
check_url/kr/58281?article_type=t

Play Video

Cite This Article
Kapoor, M., Chand-Thakuri, P., Maxwell, J. M., Young, M. C. Achieving Moderate Pressures in Sealed Vessels Using Dry Ice As a Solid CO2 Source. J. Vis. Exp. (138), e58281, doi:10.3791/58281 (2018).

View Video