Summary

L'uso combinato di corrente stimolazione transcranica diretta e terapia robotica per l'arto superiore

Published: September 23, 2018
doi:

Summary

L’uso combinato di corrente continua la stimolazione transcranica e terapia robotica come un add-on per la terapia di riabilitazione convenzionale può provocare i risultati terapeutici migliorati grazie alla modulazione della plasticità del cervello. In questo articolo, descriviamo i metodi combinati utilizzati nel nostro Istituto per migliorare le prestazioni del motore dopo il colpo.

Abstract

Disordini neurologici come ictus e paralisi cerebrale sono principali cause di disabilità a lungo termine e possono portare a gravi incapacità e limitazione delle attività quotidiane a causa di menomazioni degli arti inferiori e superiori. Terapia intensiva fisica ed occupazionale sono ancora considerati principali trattamenti, ma sono allo studio nuove terapie dell’aggiunta alla riabilitazione standard che può ottimizzare risultati funzionali.

La stimolazione transcranica corrente continua (tDCS) è una tecnica di stimolazione cerebrale non invasivo che polarizza sottostanti regioni del cervello attraverso l’applicazione di deboli correnti continue attraverso gli elettrodi sul cuoio capelluto, modulazione dell’eccitabilità corticale. Crescente interesse per questa tecnica può essere attribuito al suo basso costo, facilità d’uso e gli effetti sulla plasticità neurale umano. Una recente ricerca è stata eseguita per determinare il potenziale clinico di tDCS nei diversi termini quali la depressione, la malattia del Parkinson e riabilitazione motoria dopo il colpo. tDCS aiuta a migliorare la plasticità cerebrale e sembra essere una tecnica promettente in programmi di riabilitazione.

Un numero di dispositivi robotici è stato sviluppato per aiutare nella riabilitazione della funzione dell’arto superiore dopo il colpo. La riabilitazione dei deficit motori è spesso un processo lungo che richiede approcci multidisciplinari per un paziente raggiungere la massima indipendenza. Questi dispositivi non si intendono sostituire la terapia di riabilitazione manuale; invece, sono stati progettati come strumento aggiuntivo per i programmi di riabilitazione, permettendo la percezione immediata dei risultati e monitoraggio dei miglioramenti, aiutando così i pazienti a rimanere motivati.

Sia tDSC e robot-assistita terapia sono promettenti Add-ons per riabilitazione del colpo e la modulazione della plasticità del cervello, di destinazione con diversi rapporti che descrivono il loro uso per essere associato con la terapia convenzionale e il miglioramento dei risultati terapeutici. Tuttavia, più recentemente, alcuni piccoli studi clinici sono stati sviluppati che descrivono l’uso associato di tDCS e robot-assistita terapia nella riabilitazione del colpo. In questo articolo, descriviamo i metodi combinati utilizzati nel nostro Istituto per migliorare le prestazioni del motore dopo il colpo.

Introduction

Disturbi neurologici quali ictus, paralisi cerebrale e trauma cranico sono principali cause di disabilità a lungo termine, a causa di lesioni e successivi sintomi neurologici che possono portare a grave incapacità e la restrizione delle quotidiane attività1. Disordini di movimento riducono significativamente la qualità della vita di un paziente. Recupero motorio è fondamentalmente guidato da neuroplasticità, il meccanismo di base sottostanti la riacquisizione delle abilità motorie perdita a causa di lesioni cerebrali2,3. Così, terapie di riabilitazione sono fortemente basate su formazione intensiva della alto-dose e intensa ripetizione di movimenti per recuperare le forze e la gamma di movimento. Queste attività ripetitive sono basate sui movimenti di vita quotidiana, e i pazienti possono diventare meno motivati a causa del lento recupero motorio ed esercizi ripetitivi, che possono compromettere il successo di Neuroriabilitazione4. Terapia intensiva fisica ed occupazionale sono ancora considerati principali trattamenti, ma più recenti terapie dell’aggiunta alla riabilitazione standard stanno studiandi per ottimizzare risultati funzionali1.

L’avvento delle terapie robot-assistita ha dimostrato di avere grande valore nella riabilitazione del colpo, influenzando i processi di plasticità sinaptica neuronale e riorganizzazione. Essi sono stati studiati per l’addestramento dei pazienti con funzioni neurologiche danneggiate e assistere le persone con disabilità5. Uno dei vantaggi più importanti dell’aggiunta di tecnologia dei robot per interventi riabilitativo è la sua capacità di fornire una formazione ad alta intensità e ad alto dosaggio, che altrimenti sarebbe stato un processo molto laborioso6. L’uso di terapie robotiche, insieme a programmi informatici di realtà virtuale, consente un’immediata percezione e valutazione del recupero motorio e possibile modificare azioni ripetitive in compiti funzionali significativi, interattivi come pulizia piano cottura7 . Questo può elevare la motivazione dei pazienti e l’adesione al processo di riabilitazione lunga e consente, attraverso la possibilità di misurare e quantificare i movimenti, rilevamento del loro progresso5. Integrazione della terapia robotica nella prassi corrente può aumentare l’efficacia e l’efficacia della riabilitazione e permettere lo sviluppo di nuovi modi di esercizio8.

Robot di riabilitazione terapeutica fornire una formazione di attività specifiche e può essere diviso in dispositivi di tipo end-effector ed esoscheletro-tipo dispositivi9. La differenza tra queste classificazioni è relativo a come il movimento viene trasmesso dal dispositivo al paziente. Dispositivi di attuatore hanno strutture più semplici, come contattare arto del paziente solo nella sua parte più distale, rendendo più difficile isolare il movimento di un’articolazione. Dispositivi basati su esoscheletro hanno disegni più complessi con una struttura meccanica che rispecchia la struttura scheletrica dell’arto, così un movimento dell’articolazione del dispositivo produrrà lo stesso movimento dell’arto del paziente7,9.

Il T-WREX è un robot basato su esoscheletro che assiste i movimenti di tutto il braccio (spalla, gomito, avambraccio, polso e movimenti delle dita). Il braccio meccanico regolabile consente livelli variabili di sostegno di gravità, permettendo ai pazienti che hanno qualche funzione residua dell’arto superiore per raggiungere una maggiore gamma di movimento in una terapia spaziale tridimensionale7,9attiva. Il MIT-MANUS è un robot di tipo end-effector che lavora in un unico piano (x e y) e permette che una gravità bidimensionale compensata terapia, assistenza spalla e gomito movimenti spostando la mano del paziente nel piano orizzontale o verticale9 , 10. entrambi i robot hanno sensori di posizione incorporato che consente di quantificare il controllo motorio dell’arto superiore e recupero e un’interfaccia per l’integrazione di computer che permette 1) la formazione di attività funzionali significative simulato in un ambiente di apprendimento virtuale e 2) giochi di esercizio terapeutico, che aiutano la pratica del motore di pianificazione, i difetti del campo visivo, attenzione e coordinazione occhio-mano o trascura7,9. Essi inoltre consentono per la compensazione degli effetti di gravità sull’arto superiore e sono in grado di offrire supporto e assistenza ai movimenti ripetitivi e stereotipati in pazienti severamente alterati. Questo riduce progressivamente assistenza come il soggetto migliora e si applica assistenza minima o resistenza al movimento per i pazienti leggermente alterati9,11.

Un’altra nuova tecnica per la neuroriabilitazione è la stimolazione transcranica corrente continua (tDCS). tDCS è una tecnica di stimolazione cerebrale non invasiva che induce i cambiamenti di eccitabilità corticale attraverso l’uso di bassa ampiezza correnti continue applicate via cuoio capelluto elettrodi12,13. A seconda della polarità del flusso corrente, eccitabilità del cervello può essere aumentato da stimolazione anodica o diminuito di cathodal stimolazione2.

Recentemente, ci è stato interesse aumentato in tDCS, come esso è stato indicato per avere effetti benefici su una vasta gamma di malattie come ictus, epilessia, morbo di Parkinson, morbo di Alzheimer, fibromialgia, disturbi psichiatrici come la depressione, affettivo disordini e schizofrenia2. tDCS presenta alcuni vantaggi, quali la sua relativamente basso costo, facilità d’uso, la sicurezza e gli effetti collaterali rari14. tDCS è anche un metodo indolore e può essere attendibilmente accecati nei test clinici, come ha un finto modalità13. tDCS è probabile non ottimale per il recupero funzionale in proprio; Tuttavia, sta mostrando la promessa maggiore come terapia associata in riabilitazione, come migliora la plasticità di cervello15.

In questo protocollo, dimostriamo la terapia combinata di robot-assistita (con due robot di state-of-the-art) e neuromodulazione non invasiva con tDCS come metodo per migliorare i risultati di riabilitazione, oltre alla terapia fisica convenzionale. La maggior parte studia terapie robotiche che coinvolge o tDCS li hanno utilizzati come tecniche di isolato, e pochi hanno combinato di entrambi, che possono migliorare gli effetti benefici di là di ogni intervento da solo. Queste più piccole prove hanno dimostrato un possibile effetto sinergico fra le due procedure, con recupero del motore migliorato e capacità funzionale8,15,16,17,18, 19. Di conseguenza, nuove terapie multi-modale possono migliorare il recupero di movimento oltre le possibilità attuali.

Protocol

Questo protocollo segue le linee guida del Comitato di etica di ricerca umana della nostra istituzione. 1. TDC Controindicazioni e considerazioni specialiNota: tDCS è una tecnica sicura che invia corrente costante e basso attraverso gli elettrodi, indurre cambiamenti nell’eccitabilità di un neurone dell’area stimolata. Prima dell’installazione del dispositivo, confermare che il paziente non ha delle controindicazioni al tDCS, come reazioni avverse al tr…

Representative Results

Stimolazione cerebrale non invasiva con TDC ha recentemente suscitato interesse a causa dei suoi potenziali effetti neuroplastici, attrezzature relativamente poco costoso, facilità d’uso e pochi effetti collaterali22. Gli studi hanno indicato quel Neuromodulazione di tDCS ha il potenziale per modulare l’eccitabilità corticale e plasticità, favorendo così i miglioramenti nella prestazione del motore attraverso la plasticità sinaptica stimolando la corteccia mot…

Discussion

In questo protocollo, descriviamo un protocollo di terapia standard per la stimolazione combinata tDCS associati e terapia robotica, utilizzato come complemento ai programmi di riabilitazione convenzionale in pazienti con problemi di braccio. Obiettivo del protocollo è quello di migliorare la mobilità e la funzione motoria. È importante osservare sulla rampa e rampa-off della macchina tDCS per evitare qualsiasi rischio di effetti avversi. tDCS è una tecnica sicura con pochi effetti collaterali descritti in letteratur…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Gli autori vorrei ringraziare la Spaulding laboratorio di neuromodulazione e Instituto de Reabilitação Lucy Montoro per il loro generoso sostegno a questo progetto.

Materials

tDCS device Soterix Medical Soterix Medical 1×1
9V Battery (2x)
Two rubber head bands
Two conductive rubber electrodes
Two sponge electrodes
Cables
NaCl solution
Measurement tape
Armeo Spring Robot Hocoma
inMotion ARM Interactive Motion Technologies

References

  1. Miller, E. L., et al. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: A scientific statement from the American Heart Association. Stroke. 41 (10), 2402-2448 (2010).
  2. Adeyemo, B. O., Simis, M., Macea, D. D., Fregni, F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in noninvasive brain stimulation in stroke. Front Psychiatry. 3 (8), 1-27 (2012).
  3. Johansson, B. B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurologica Scandinavica. 123 (3), 147-159 (2011).
  4. Hummel, F., Cohen, L. G. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabilitation Neural Repair. 19 (1), 14-19 (2005).
  5. Lo, A. C., et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine. 362 (19), 1772-1783 (2010).
  6. Mehrholz, J., Haedrich, A., Platz, T., Kugler, J., Pohl, M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews. , (2012).
  7. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation. 11 (3), 10-1186 (2014).
  8. Ang, K. K., et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Archives of Physical Medicine and Rehabilitation. 96 (3), S79-S87 (2015).
  9. Chang, W. H., Kim, Y. H. Robot-assisted therapy in stroke rehabilitation. Journal of Stroke. 15 (3), 174-181 (2013).
  10. Volpe, B. T., et al. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 54 (10), 1938-1944 (2000).
  11. Volpe, B. T., et al. Robotic devices as therapeutic and diagnostic tools for stroke recovery. Archives of Neurology. 66 (9), 1086-1090 (2009).
  12. Nitsche, M. A., Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. TheJournal of Physiology. 527 (3), 633-639 (2000).
  13. Fregni, F., et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 16 (14), 1551-1555 (2005).
  14. Kim, D. Y., et al. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. American Journal of Physical Medicine and Rehabilitation. 89 (11), 879-886 (2010).
  15. Giacobbe, V., et al. Transcranial direct current stimulation (tDCS) and robot practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 33 (1), 49-56 (2013).
  16. Hesse, S., et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restorative Neurology and Neuroscience. 25 (1), 9-16 (2007).
  17. Hesse, S., et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabilitation and Neural Repair. 25 (9), 838-846 (2001).
  18. Edwards, D. J., et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restorative Neurology and Neuroscience. 27 (3), 199-207 (2008).
  19. Ochi, M., Saeki, S., Oda, T., Matsushima, Y., Hachisuka, K. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. Journal of Rehabilitation Medicine. 45 (2), 137-140 (2013).
  20. DaSilva, A. F., Volz, M. S., Bikson, M., Fregni, F. Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments. (51), (2011).
  21. Antal, A., Terney, D., Poreisz, C., Paulus, W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience. 26 (9), 2687-2691 (2007).
  22. Williams, J. A., Pascual-Leone, A., Fregni, F. Interhemispheric modulation induced by cortical stimulation and motor training. Physical Therapy. 90 (3), 398-410 (2010).
  23. Zimerman, M., et al. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 43 (8), 2185-2191 (2012).
  24. Nitsche, M. A., et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology. 553 (1), 293-301 (2003).
  25. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., Schlaug, G. M. D. P. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75 (24), 2176-2184 (2010).
  26. Fusco, A., et al. The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BioMed Research International. , (2014).
  27. Kwakkel, G., Kollen, B. J., Krebs, H. I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair. 22 (2), 111-121 (2008).
  28. Gilliaux, M., et al. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabilitation and Neural Repair. 29 (2), 183-192 (2015).
  29. Timmermans, A. A., et al. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation. 11 (1), 45 (2014).
  30. Hummel, F. C., et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation. 1 (4), 370-382 (2008).
  31. Nair, D. G., et al. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restorative Neurology and Neuroscience. 29 (6), 411-420 (2011).
  32. Nitsche, M. A., et al. Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt. 73 (4), 332-335 (2002).
check_url/kr/58495?article_type=t

Play Video

Cite This Article
Pai, M. Y. B., Terranova, T. T., Simis, M., Fregni, F., Battistella, L. R. The Combined Use of Transcranial Direct Current Stimulation and Robotic Therapy for the Upper Limb. J. Vis. Exp. (139), e58495, doi:10.3791/58495 (2018).

View Video