Summary

酵母神经退行性蛋白病模型中组蛋白后转化修饰改变的表征

Published: March 24, 2019
doi:

Summary

该协议概述了实验程序, 以描述全基因组的变化, 在与 ALS 和帕金森病相关的蛋白质过度表达的情况下, 组蛋白翻译后修饰 (PTM) 的水平发生。酿酒酵母模型。SDS-PAGE 分离后, 通过西方印迹, 通过修正特异性抗体检测单个组蛋白 PTM 水平。

Abstract

神经退行性疾病, 如肌萎缩侧索硬化症 (ALS) 和帕金森病 (PD), 每年造成数十万人丧生。缺乏能够阻止疾病进展的有效治疗方案。尽管在大量患者中进行了广泛的测序工作, 但大多数 ALS 和 PD 病例仅由于基因突变就无法解释。表观遗传学机制, 如组蛋白的翻译后修饰, 可能参与神经退行性疾病的病因和进展, 并导致药物干预的新目标。哺乳动物在体内和体外模型 als 和 PD 是昂贵的, 往往需要长期和费力的实验方案。在这里, 我们概述了一种实用、快速和具有成本效益的方法, 利用酿酒酵母作为模型系统, 确定组蛋白修饰水平的全基因组变化。该协议允许对与神经退行性蛋白病有关的表观遗传变化进行全面调查, 证实了以前在不同模型系统中的发现, 同时显著扩大了我们对神经退行性疾病表观基因组。

Introduction

神经退行性疾病是毁灭性的疾病, 几乎没有或根本没有治疗选择。其中, 肌萎缩侧索硬化症 (ALS) 和帕金森病 (PD) 尤其可怕。大约90% 的 als 和 pd 病例被认为是零星的, 没有家族病史, 而其余病例在家庭中运行, 一般与特定的基因突变1,2有关。有趣的是, 这两种疾病都与蛋白质错位和聚集3,4,5,6有关。例如, 融合肉瘤 (fus) 和 tar dna 结合蛋白 43 (tdp-43) 是 rna 结合蛋白, 在 als78910 11,12, 而α-合核蛋白是蛋白质聚集物的主要组成部分, 称为 le七烯体pd5,13,14,15

尽管在大量患者中进行了广泛的全基因组关联工作, 但绝大多数 ALS 和 PD 病例在基因上仍无法解释。表观遗传学能在神经退行性疾病中发挥作用吗?表观遗传学包括基因表达的变化, 在不改变基础 DNA 序列16的情况下发生。一个主要的表观遗传机制涉及组蛋白16的翻译后修饰 (Ptm).在真核细胞中, 遗传物质紧紧地包裹在染色质中。染色质的基本单位是核糖体, 由146个基对 dna 组成, 包裹在一个组蛋白八分体上, 由四对组蛋白组成 (分别为两个组蛋白 H2A、H2A、H3 和 H4)17。每个组蛋白都有一个 n 端的尾巴, 从核糖体中伸出来, 可以通过添加各种化学分子来修饰, 通常是在赖氨酸和精氨酸残留物18上。这些 Ptm 是动态的, 这意味着它们可以很容易地添加和删除, 并包括乙酰化、甲基化和磷酸化等群体。Ptm 控制 DNA 对转录机制的可访问性, 从而有助于控制基因表达18。例如, 组蛋白乙酰化降低了高度基本的组蛋白蛋白和负电荷 DNA 主干之间的静电相互作用的强度, 使乙酰化组蛋白包装的基因更容易获得, 从而更高表示19。最近, 特定组蛋白 ptm 及其组合的显著生物学特异性导致组蛋白编码假说20, 21, 其中写、擦除和读取组蛋白 ptm 的蛋白质都协同作用调节基因表达。

酵母是研究神经退行性变的一个非常有用的模型。重要的是, 许多神经元细胞通路从酵母保存到人类22,23,24。酵母重述 fus、tdp-43 或α-共核蛋白 222324、2526的过度表达后的细胞毒性表型和蛋白质夹杂物.事实上,酿酒酵母的 als 模型已被用来识别遗传危险因素在人类27。此外, 酵母过度表达人α-共核蛋白允许将 rsp5 网络定性为可吸毒的靶点, 以改善 28,29神经元α-共核蛋白的毒性。

在这里, 我们描述了一个利用酿酒酵母检测全基因组组蛋白 PTM 变化与神经退行性蛋白病变相关的协议 (图 1)。与其他体外和动物神经退行性模型相比, 酿酒酵母的使用具有很强的吸引力, 因为它使用方便、成本低、速度快。利用以前开发的 als 和 pd 模型22,23,25, 26, 我们在酵母中过度表达了人类 fus、tdp-43 和α-合核蛋白, 并发现了明显的组蛋白 ptm 变化发生在与每个蛋白病30的连接。我们在这里描述的协议可以在从转换到数据分析的不到两周的时间内完成。

Protocol

1. 用神经退行性蛋白质与病理相关的蛋白质结构转化酿酒酵母 在30°c 晃动 (200 转/分) 的酵母提取物肽葡萄糖 (YPD) 肉汤中生长野生型 (WT) 303 酵母。 经过12-16小时的生长, 用 YPD 将酵母稀释到600纳米 (OD600) 的光学密度。由于每次转化都需要10毫升的酵母液体培养, 因此为5个转化制备50毫升的酵母液体培养, 这些转化与 FUS、TDP-43、a-synuclein 和向量仅 (ccdB) 结构相对应, 以及负…

Representative Results

为了说明这个方法, 我们将利用最近发布的结果30。WT 人 FUS 和 TDP-43 被过度表达 5小时, 而 WT α-合核蛋白被过度表达8小时。将 ccdB 构造用作矢量负控制。图 2显示了固体和液体培养物中的生长抑制。酵母被收获了, 并且西部印迹与修改特异性抗体被执行。采用抗总 H3 作为加载控制。在 FUS 过度表达模型中, H3S10ph 和 H3S10ph 的水平明显下…

Discussion

这里描述的协议提供了一种简单、方便和具有成本效益的方法, 可对与神经退行性蛋白病变相关的全基因组蛋白组蛋白 PTM 变化进行分类。虽然 als 和 PD 还有其他模型, 如体外人类细胞系和小鼠模型32, 但由于其易用性,酿酒酵母仍然很有吸引力。例如, 酵母模型不需要使用无菌罩, 也不需要在细胞培养工作的同时进行强化培训。此外, 酵母的培养试剂也比哺乳动物细胞?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢罗耶娜·塔纳兹、胡达·优素夫和萨迪卡·塔森的技术帮助。我们非常感谢詹姆斯·肖特教授在蔗糖调谐实验的设计方面慷慨提供试剂和智力援助。酵母浆浆体是 Aaron Gitler 教授的慷慨礼物 (包括 303Gal-FUS;添加基因质粒 # 29614)。布鲁克林学院和高级科学研究中心 (纽约市立大学) 以及国家卫生研究院 NINSS 高级博士后过渡奖 (K22NS09131401) 支持 m. p. t。

Materials

-His DO Supplement Clontech 630415
10x Running Buffer Mix: 141.65 g glycine (ThermoFisher BP381-1), 30.3 g Tizma base (Sigma-Aldrich T6066), 10 g sodium dodecyl sulfate (Sigma-Aldrich L3771), and 1 L deionized water, pH 8.8.
12% Polyacrylamide Gels BIO-RAD 456-1041
2-mercaptoethanol Sigma-Aldrich M3148
Anti-acetyl-Histone H3 (Lys14) Primary Antibody MilliporeSigma 07-353 (Lot No. 2762291) Dilution: 1/1000
Anti-acetyl-Histone H4 (Lys 16) Primary Antibody Abcam ab109463 (Lot No. GR187780) Dilution: 1/2000
Anti-acetyl-Histone H4 (Lys12) Primary Antibody Abcam ab46983 (Lot No. GR71882) Dilution: 1/5000
Anti-dimethyl-Histone H3 (Lys36) Primary Antibody Abcam ab9049 (Lot No. GR266894, GR3236147) Dilution: 1/1000
Anti-Histone H3 Primary Antibody Abcam ab24834 (Lot No. GR236539, GR174196, GR3194335) Nuclear Loading Control; Dilution: 1/2000
Anti-phospho-Histone H2B (Thr129) Primary Antibody Abcam ab188292 (Lot No. GR211874) Dilution: 1/1000
Anti-phospho-Histone H3 (Ser10) Primary Antibody Abcam ab5176 (Lot No. GR264582, GR192662, GR3217296) Dilution: 1/1000
BioPhotometer D30 Eppendorf 6133000010
Cell Culture Dish (100 x 20 mm) Eppendorf 30702118
Cell Culture Plate, 96 well Eppendorf 30730011
Centrifuge 5804/5804 R/5810/5810 R Eppendorf 22625501
Donkey Anti-Mouse IRDye 800 CW LI-COR 926-32212 (Lot No. C60301-05, C61116-02, C80108-05) Dilution: 1/5000
Donkey Anti-Rabbit IRDye 860 RD LI-COR 926-68073 (Lot No. C60217-06, C70323-06, C70601-05, C80116-07) Dilution: 1/2500
Ethanol Sigma-Aldrich E7023
Extra thick blot paper (filter paper) BIO-RAD 1703968
Galactose Sigma-Aldrich G0750 Prepare 20% w/v stock solution.
Glucose Sigma-Aldrich G8270 Prepare 20% w/v stock solution.
Glycerol Sigma-Aldrich G5516 Prepare 50 % w/v solution.
Immobilon-FL Transfer Membranes MilliporeSigma IPFL00010
Lithium acetate dihydrate (LiAc) Sigma-Aldrich L4158 Prepare a 1 M solution.
Loading Dye Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue (Sigma-Aldrich B8026), 4.7 mL glycerol, 1.2 mL 0.5M Trizma base pH 6.8, 0.93 g DL-Dithiothreitol (Sigma-Aldrich D0632), and 2.1 mL deionized water.
Methanol ThermoFisher A412-4
Mini-PROTEAN Tetra Vertical Electrophoeresis Cell BIO-RAD 1658004
Multichannel pipet Eppendorf 2231300045
NEB Restriction Enzyme Buffer 2.1, 10x New England Bio Labs 102855-152
Nhe I Restriction Enzyme New England Bio Labs 101228-710
Nuclease Free Water Qiagen 129114
Odyssey Fc Imaging System LI-COR Biosciences 2800-03
OmniTray Cell Culture Treated w/Lid Sterile, PS (86 x 128 mm) ThermoFisher 165218
pAG303GAL-a-synuclein-GFP Gift from A. Gitler
pAG303GAL-ccdB Addgene 14133
pAG303Gal-FUS Addgene 29614
pAG303GAL-TDP-43 Gift from A. Gitler
Poly(ethylene glycol) (PEG) Sigma-Aldrich P4338 Prepare a 50% w/v solution.
Ponceau S Stain Sigma-Aldrich P3504 Mix: 0.5 g 0.1% w/w Ponceau S dye, 5 mL 1% v/v acetic acid (Sigma-Aldrich 320099), and 500 mL deionized water.
PowerPac Basic Power Supply BIO-RAD 164-5050
Raffinose pentahydrate Sigma-Aldrich R7630 Prepare 10% w/v stock solution.
Salmon Sperm DNA Agilent Tech 201190
SD-His plates Mix: 20 g Agar (Sigma-Aldrich A1296), 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids (ThermoFisher 291920), and 900 mL deionized water.
SGal-His plates Mix: 20 g Agar, 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids, 100 mL galactose solution, and 900 mL deionized water.
Sodium dodecyl sulfate Loading Buffer Store at -20 oC. 6X, Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue, 0.93 g DL-Dithiothreitol, 2.1 mL deionized water, 4.7 mL glycerol, and 1.2 mL 0.5 M Trizma base, pH 6.8.
Sodium hydroxide Sigma-Aldrich 221465 Prepare 0.2 M solution.
Sucrose Sigma-Aldrich 84097 Prepare 20% w/v stock solution.
TBS + 0.1% Tween 20 (TBST) Mix: 100 mL 10X TBS, 1 mL Tween 20 (Sigma-Aldrich P7949), and 900 mL deionized water.
TBS Blocking Buffer LI-COR 927-5000
Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell BIO-RAD 170-3940
Transfer Buffer Mix: 22.5 g glycine, 4.84 g Tizma base, 400 mL methanol, 1 g sodium dodecyl sulfate, and 1.6 L deionized water.
Tris-Buffered Saline (TBS) 10X, 7.6 pH, Solution: Mix 24 g Trizma base, and 88 g sodium chloride (Sigma-Aldrich S7653). Fill to 1 L with deionized water.
WT 303 S. cerevisiae yeast Gift from J. Shorter
Yeast Extract Peptone Dextrose (YPD) Sigma-Aldrich Y1375

References

  1. Landgrave-Gómez, J., Mercado-Gómez, O., Guevara-Guzmán, R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Frontiers in Cellular Neuroscience. 9, 58 (2015).
  2. Paez-Colasante, X., Figueroa-Romero, C., Sakowski, S. A., Goutman, S. A., Feldman, E. L. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nature Reviews Neurology. 11 (5), 266-279 (2015).
  3. Beitz, J. M. Parkinson’s Disease: a Review. Frontiers in Bioscience. 6, 65-74 (2014).
  4. Kim, H. J., et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 495 (7442), 467-473 (2013).
  5. Poewe, W., et al. Parkinson disease. Nature Reviews Disease Primers. 3, 17013 (2017).
  6. Robberecht, W., Philips, T. The changing scene of amyotrophic lateral sclerosis. Nature Reviews Neuroscience. 14 (4), 248-264 (2013).
  7. Chen-Plotkin, A. S., Lee, V. M. Y., Trojanowski, J. Q. TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology. 6 (4), 211-220 (2010).
  8. Couthouis, J., et al. A yeast functional screen predicts new candidate ALS disease genes. Proceedings of the National Academy of Sciences. 108 (52), 20881-20890 (2011).
  9. Da Cruz, S., Cleveland, D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Current Opinion in Neurobiology. 21 (6), 904-919 (2011).
  10. King, O. D., Gitler, A. D., Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Research. 1462, 61-80 (2012).
  11. Neumann, M., et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain. 134 (9), 2595-2609 (2011).
  12. Neumann, M., et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science. 314 (5796), 130-133 (2006).
  13. Baba, M., et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. The American Journal of Pathology. 152 (4), 879-884 (1998).
  14. Lotharius, J., Brundin, P. Pathogenesis of parkinson’s disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience. 3 (12), 932-942 (2002).
  15. Spillantini, M. G., et al. α-Synuclein in Lewy bodies. Nature. 388 (6645), 839-840 (1997).
  16. Probst, A. V., Dunleavy, E., Almouzni, G. Epigenetic inheritance during the cell cycle. Nature Reviews Molecular Cell Biology. 10 (3), 192-206 (2009).
  17. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389 (6648), 251-260 (1997).
  18. Mazzio, E. A., Soliman, K. F. A. Basic concepts of epigenetics. Epigenetics. 7 (2), 119-130 (2012).
  19. Struhl, K. Histone acetylation and transcriptional regulatory. Genes & Development. 12 (5), 599-606 (1998).
  20. Garcia, B. A., Shabanowitz, J., Hunt, D. F. Characterization of histones and their post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology. 11 (1), 66-73 (2007).
  21. Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature. 403 (6765), 41-45 (2000).
  22. Jovicic, A., et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature Neuroscience. 18 (9), 1226-1229 (2015).
  23. Sanchez, Y., Lindquist, S. L. HSP104 required for induced thermotolerance. Science. 248 (4959), 1112 (1990).
  24. Outeiro, T. F., Lindquist, S. Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology. Science. 302 (5651), 1772 (2003).
  25. Johnson, B. S., et al. TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity. Journal of Biological Chemistry. 284 (30), 20329 (2009).
  26. Sun, Z., et al. Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. PLOS Biology. 9 (4), e1000614 (2011).
  27. Elden, A. C., et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 466 (7310), 1069-1075 (2010).
  28. Wijayanti, I., Watanabe, D., Oshiro, S., Takagi, H. Isolation and functional analysis of yeast ubiquitin ligase Rsp5 variants that alleviate the toxicity of human α-synuclein. The Journal of Biochemistry. 157 (4), 251-260 (2015).
  29. Tardiff, D. F., et al. Yeast Reveal a “Druggable” Rsp5/Nedd4 Network that Ameliorates α-Synuclein Toxicity in Neurons. Science. 342 (6161), 979 (2013).
  30. Chen, K., et al. Neurodegenerative Disease Proteinopathies Are Connected to Distinct Histone Post-translational Modification Landscapes. ACS Chemical Neuroscience. 9 (4), 838-848 (2018).
  31. Flick, J. S., Johnston, M. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Molecular and Cellular Biology. 10 (9), 4757 (1990).
  32. Fernandez-Santiago, R., Ezquerra, M. Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models. Stem Cells International. 2016, 9464591 (2016).
  33. Armakola, M., et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nature Genetics. 44 (12), 1302-1309 (2012).
  34. Tibshirani, M., et al. Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1. Human Molecular Genetics. 24 (3), 773-786 (2015).
  35. Masala, A., et al. Epigenetic Changes Associated with the Expression of Amyotrophic Lateral Sclerosis (ALS) Causing Genes. 신경과학. 390, 1-11 (2018).
  36. Eryilmaz, I. E., et al. Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurological Research. 39 (11), 965-972 (2017).
  37. Daniele, S., et al. Epigenetic Modifications of the α-Synuclein Gene and Relative Protein Content Are Affected by Ageing and Physical Exercise in Blood from Healthy Subjects. Oxidative Medicine and Cellular Longevity. 2018, 3740345 (2018).
check_url/kr/59104?article_type=t

Play Video

Cite This Article
Bennett, S. A., Cobos, S. N., Meykler, M., Fallah, M., Rana, N., Chen, K., Torrente, M. P. Characterizing Histone Post-translational Modification Alterations in Yeast Neurodegenerative Proteinopathy Models. J. Vis. Exp. (145), e59104, doi:10.3791/59104 (2019).

View Video