Summary

Dissektion af Drosophila puppe nethinden for immunhistokemi, vestlige analyse og RNA isolering

Published: March 15, 2019
doi:

Summary

Dette paper præsenterer en kirurgisk metode til dissekere Drosophila puppe nethinder sammen med protokoller til forarbejdning af væv til immunhistokemi, vestlige analyse og RNA-udvinding.

Abstract

Drosophila puppe nethinden giver en fremragende modelsystem for studiet af morfogenetiske processer under udvikling. I dette papir præsenterer vi en pålidelige protokol til dissektion af den sarte Drosophila puppe nethinden. Vores kirurgisk tilgang udnytter let tilgængelige microdissection værktøjer for at åbne pupper og netop uddrag eye-hjerne komplekser. Disse kan være fast, underkastes Immunhistokemi og nethinder så monteret på objektglas og afbildet hvis målet er at opdage cellulære eller subcellulært strukturer. Alternativt, ikke optagne nethinder kan være isoleret fra hjernevæv, mængden i passende buffere og udnyttet for protein gel elektroforese eller mRNA udvinding (at vurdere protein eller gene expression, henholdsvis). Betydelig øvelse og tålmodighed kan være nødvendigt at beherske microdissection protokollen beskrevet, men når mestret, protokollen giver mulighed for forholdsvis hurtig isolation af hovedsagelig ubeskadigede nethinder.

Introduction

Drosophila nethinden er sammensat af cirka 750 ommatidia omgivet af pigment celler arrangeret i en honeycomb gitter1,2,3,4. Hver ommatidium indeholder otte fotoreceptor neuroner, fire linse-secernerende kegle celler og to primære pigment celler. Omkring hver ommatidium er pigment-producerende gitter celler og sensoriske stritter grupper. På grund af sin post mitotiske natur og stereotype sekskantede arrangement giver Drosophila puppe nethinden en fremragende modelsystem for studiet af morfogenetiske processer herunder celle vedhæftning5,6, 7,8,9,10 og apoptose11,12,13,14,15.

Flere publicerede protokoller udnytter lufttrykket til at udtrække eye-hjerne komplekser fra Drosophila pupper16,17,18. Protokollen beskrevet i stedet udnytter her microdissection værktøjer til omhyggeligt og isolere præcist eye-hjerne komplekser med mål at opnå ubeskadigede retinale væv. Dette er afgørende, hvis nethinder til at blive udnyttet til morfologiske, protein eller genekspression analyserer da skader til nethinder kan resultere i cellulært stress eller død, som kunne ændre den cellulære fænotype eller gen udtryk. Derudover efter praksis, kan 6 til 10 eye-hjerne komplekser være isoleret i 10 til 15 min, at lette mål at minimere variationen i den alder og udviklingsstadiet af dissekerede øjet væv.

Fiksering, immunfarvning og hele-mount protokollen beskrevet nedenfor er velegnet til tilberedning af Drosophila øjne til fluorescerende mikroskopi. Nethinder kan sættes i varmeskab med antistoffer rettet mod proteiner af interesse. For eksempel, kan antistoffer mod adherens junction komponenter udnyttes til at visualisere de apikale omkredse celler, således at egenskaber herunder celletype, form og arrangement kan være vurderet19. Før fiksering, kan øjne i stedet være kløvet fra hjernen med henblik på at udvinde protein til vestlige analyse, eller RNA til brug i qRT-PCR eller RNA-sekvens.

Protocol

1. væv forberedelse Sæt op Drosophila krydser (som beskrevet tidligere20) eller kultur specifikke Drosophila -stammer for at få pupper af den ønskede genotype. At sikre, at et stort antal pupper opstå tilfældigt, etablere disse flyve kulturer i to eksemplarer på næringsrig mad medier eller standard mad media generøst suppleret med gær-pasta. Vedligeholde Drosophila kulturer ved 25 ° C. For krydser udnytte UAS-GAL4 system, er GMR-GAL4</e…

Representative Results

Den puppe eye er et let tilgængeligt væv, der fungerer som en fremragende model til at undersøge udviklingsprocesser at drive morfogenese. Her, vi har dissekeret nethinder og brugt immunofluorescens for at opdage de apikale adherens vejkryds (figur 3A, C) eller Dcp-1-caspase (figur 3D), der er aktiveret under apoptose (figur 3)25. Disse metoder tillader en klart observere celler under nøg…

Discussion

Metoden for Drosophila puppe øje dissektion beskrevet her giver mulighed for dyrkning af 6 til 10 eye-hjerne komplekser i 10 til 15 min. Men tålmodighed og praksis er nødvendig for at beherske dissektion teknik og forbedre kvaliteten og hastigheden af dissektioner. Denne korte dissektion tid sikrer, at hvert øje er ca samme udviklingsmæssige stadie, at reducere variation i fænotype eller gen udtryk for nethinder i et datasæt. Mens alternative protokoller kan kræve mindre praksis at mestre, er vores proto…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi takker Zack tromme og vores korrekturlæsere for nyttige kommentarer på manuskriptet. Dette arbejde blev støttet af R15GM114729.

Materials

Adobe Photoshop Adobe Image processing software
Bamboo splints, 6"  Ted Pella Inc 116
Beta mercaptoethanol Sigma-Aldrich M3148
Beta-glycerol phosphate Sigma-Aldrich 50020
Black dissecting dish Glass petri dish filled to rim with SYLG170 or SYLG184 (colored black with finely ground charcoal powder). Leave at room temperature for 24-48 h to polymerize.
Blade holder Fine Science Tools 10053
Bovine serum albumin Sigma-Aldrich A7906
cOmplete, EDTA-free protease inhibitor cocktail tablets Roche 4693132001
Confocal microscope (Zeiss LSM 501) Carl Zeiss or similar microscope
Diethyl Pyrocarbonate (DEPC) Sigma-Aldrich 40718
Double-sided tape 3M 665
Drosophila food media, nutrient-rich  7.5% sucrose, 15% glucose, 2.5% agar, 20% brewers yeast, 5% peptone, 0.125% MgSO4.7H2O, 0.125% CaCl2.2H20
Drosophila food media, standard Bloomington Drosophila Stock center cornmeal recipe.  (https://bdsc.indiana.edu/information/recipes/bloomfood.html)
Ethylenediaminetetraacetic acid Sigma-Aldrich E6758
Fixative solution 4% formadehyde in PBS, pH 7.4.
Fluorescence microscope (TCS SP5 DM microscope) Leica Microsystems or similar microscope
Forceps  Fine Science Tools 91150-20 Forceps should be sharpened frequently.
Formaldehyde Thermo Scientific 28908
Glass 9-well dishes  Corning 7220-85 Also known as 9-well dishes 
Glass coverslips (22 x 22 mm) Fisher Scientific 12-542-B
Glass microscope slides (25 x 75 x 1 mm) Fisher Scientific 12-550-413
Glass petri dish Corning 3160-100BO
Glycerol Sigma-Aldrich G5516
Image Studio software version 5.2.5 LI-COR Biosciences Image processing software for quantitation of Western blots.
Laemmli sample buffer Bio-Rad 161-0737 2X concentrated protein sample buffer, supplement with beta mercaptoethanol as per manufacturer's instructions.
Lane marker reducing sample buffer  ThermoFisher Scientific 39000 5X concentrated protein sample buffer.
Microcentrigure tubes  Axygen MCT-175-C
Microdissection scissors  Fine Science Tools 15000-03
Microwell trays (72 x 10 µL wells) Nunc 438733
Mounting media 0.5% N-propylgallate and 80% glycerol in PBS
N-propylgallate Sigma-Aldrich P3130
Nuclease-free PBS (PBS in 0.1% DEPC, pH 7.4) Add appropriate volume of DEPC to PBS, mix well and incubate overnight at room temperature with constant stirring. Autoclave for at least 20 minutes. Store at 4°C
PBS (phosphate buffered saline pH 7.4) Sigma-Aldrich P5368 Prepare according to manufacturer's instructions
PBS+pi (PBS plus protease and phoshatase inhibitors) 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in PBS, pH 7.4.  
PBT 0.15% TritonX and 0.5% bovine serum albumin in PBS, pH 7.4
Pin holder Fine Science Tools 26016-12
Primary antibody: goat anti-GAPDH Imgenex IMG-3073 For Western blotting. Used at 1:3000
Primary antibody: rabbit anti-cleaved Dcp-1 Cell signaling 9578S For immunofluorescence. Used at 1:100
Primary antibody: rat anti-DEcad Developmental Studies Hybridoma Bank DCAD2 For immunofluorescence. Used at 1:20
Primary antibody: rat anti-DEcad DOI: 10.1006/dbio.1994.1287 DCAD1  Gift from Tadashi Uemura. Used at 1:100.
RNA extration kit: Relia Prep RNA tissue Miniprep kit  Promega Z6110
Rnase decontamination reagent (RNase Away) Molecular BioProducts 7002
Scalpel blades Fine Science Tools 10050 Break off small piece of scapel blade and secure in blade holder.
Secondary antibody: 488-conjugated  donkey anti-rat IgG (H+L) Jackson ImmunoResearch 712-545-153 For immunofluorescence. Used at 1:200
Secondary antibody: cy3-conjugated goat anti-rabbit IgG (H+L) Jackson ImmunoResearch 111-165-144 For immunofluorescence. Used at 1:100
Secondary antibody: HRP-conjugated goat anti-rat IgG (H+L) Cell Signaling Technology 7077 For Western blotting. Used at 1:3000
Secondary antibody: HRP-conjugated rabbit anti-goat IgG (H+L) Jackson ImmunoResearch 305-035-003 For Western blotting. Used at 1:3000
Sodium Chloride Sigma-Aldrich S3014
Sodium Fluoride Sigma-Aldrich 215309
Sodium vanadate Sigma-Aldrich 50860
Spectrophotometer (NanoDrop) ThermoFisher Scientific 2000c 
Stereo dissecting microscope (M60 or M80) Leica Microsystems or similar microscope
Sylgard (black) Dow Corning SYLG170
Sylgard (transparent) Dow Corning SYLG184 Color black with finely ground charcol powder
Tissue: Kimwipes KIMTECH 34120
TritonX Sigma-Aldrich T8787
Trizma hydrochloride pH7.5 Sigma-Aldrich T5941
Tungsten needle, fine Fine Science Tools 10130-10 Insert into pin holder
Tungsten needle, sturdy Fine Science Tools 10130-20 Insert into pin holder
WTLB (western tissue lysis buffer) 150mM NaCl, 1.5% Triton X-100, 1mM EDTA, 20% glycerol, 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in 50mM Tris-HCl (pH 7.5). Supplement with one cOmplete protease cocktail table per 10 mL solution.
Yeast paste (local supermarket) Approximately 2 tablespoons Fleischmann's ActiveDry Yeast (or similar) dissolved in ~20 mL distilled H2O

References

  1. Cagan, R. L., Ready, D. F. The emergence of order in the Drosophila pupal retina. Developmental biology. 136 (2), 346-362 (1989).
  2. Wolff, T., Ready, D. . The development of Drosophila melanogaster. , 1277-1325 (1993).
  3. Carthew, R. W. Pattern formation in the Drosophila eye. Current opinion in genetics & development. 17 (4), 309-313 (2007).
  4. Kumar, J. P. Building an ommatidium one cell at a time. Developmental Dynamics. 241 (1), 136-149 (2012).
  5. Hayashi, T., Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature. 431, 647 (2004).
  6. Bao, S., Cagan, R. Preferential Adhesion Mediated by Hibris and Roughest Regulates Morphogenesis and Patterning in the Drosophila Eye. Developmental Cell. 8 (6), 925-935 (2016).
  7. Cordero, J. B., Larson, D. E., Craig, C. R., Hays, R., Cagan, R. Dynamic Decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development (Cambridge, England). 134 (10), 1861-1871 (2007).
  8. Larson, D. E., Liberman, Z., Cagan, R. L. Cellular behavior in the developing Drosophila pupal retina. Mechanisms of development. 125 (3-4), 223-232 (2008).
  9. Martín-Bermudo, M. D., Bardet, P. L., Bellaïche, Y., Malartre, M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development. 142 (8), 1492-1501 (2015).
  10. Chan, E. H., Chavadimane Shivakumar, P., Clément, R., Laugier, E., Lenne, P. F. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife. 6, e22796 (2017).
  11. Lin, H. V., Rogulja, A., Cadigan, K. M. Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development. 131 (10), 2409-2418 (2004).
  12. Cordero, J., Jassim, O., Bao, S., Cagan, R. A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mechanisms of development. 121 (12), 1523-1530 (2004).
  13. Mendes, C. S., et al. Cytochrome c‐d regulates developmental apoptosis in the Drosophila retina. EMBO reports. 7 (9), 933-939 (2006).
  14. Monserrate, J., Brachmann, C. B. Identification of the death zone: a spatially restricted region for programmed cell death that sculpts the fly eye. Cell Death & Differentiation. 14 (2), 209-217 (2007).
  15. Bushnell, H. L., et al. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Developmental Biology. 433 (1), 94-107 (2018).
  16. Wolff, T. Dissection techniques for pupal and larval Drosophila eyes. CSH Protoc. 2007, (2007).
  17. Hsiao, H. Y., et al. Dissection and Immunohistochemistry of Larval, Pupal and Adult Drosophila Retinas. Journal of visualized experiments : JoVE. (69), e4347 (2012).
  18. Tea, J. S., Cespedes, A., Dawson, D., Banerjee, U., Call, G. B. Dissection and Mounting of Drosophila Pupal Eye Discs. Journal of Visualized Experiments : JoVE. (93), e52315 (2014).
  19. Johnson, R. I., Cagan, R. L. A Quantitative Method to Analyze Drosophila Pupal Eye Patterning. PLoS ONE. 4 (9), e7008 (2009).
  20. Greenspan, R. J. . Fly pushing : the theory and practice of Drosophila genetics. , (2004).
  21. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  22. Ellis, M. C., O’Neill, E. M., Rubin, G. M. Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development. 119 (3), 855-865 (1993).
  23. Duffy, B. J. GAL4 system in drosophila: A fly geneticist’s swiss army knife. genesis. 34 (1-2), 1-15 (2002).
  24. Li, W. Z., Li, S. L., Zheng, H. Y., Zhang, S. P., Xue, L. A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster. Genet Mol Res. 11 (3), 1997-2002 (2012).
  25. Song, Z., McCall, K., Steller, H. DCP-1, a Drosophila Cell Death Protease Essential for Development. Science. 275 (5299), 536-540 (1997).
  26. Hay, B. A., Wassarman, D. A., Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell. 83 (7), 1253-1262 (1995).
check_url/59299?article_type=t

Play Video

Cite This Article
DeAngelis, M. W., Johnson, R. I. Dissection of the Drosophila Pupal Retina for Immunohistochemistry, Western Analysis, and RNA Isolation. J. Vis. Exp. (145), e59299, doi:10.3791/59299 (2019).

View Video