Summary

研究使用细胞外基体水凝胶的正常组织辐射效应

Published: July 24, 2019
doi:

Summary

该协议提出了一种在外体照射后,对母体乳腺脂肪垫进行去细胞化和随后水凝胶形成的方法。

Abstract

辐射是治疗三阴性乳腺癌患者的一种疗法。辐射对健康乳腺组织细胞外基质(ECM)的影响及其在原发性肿瘤部位局部复发中的作用尚不得而知。在这里,我们提出了一种从母体乳腺脂肪垫中提取的ECM水凝胶的去细胞化、冻干和制造方法。对脱细胞化过程的有效性进行了评价,并评估了变菌学参数。GFP-和荧光素酶标记的乳腺癌细胞封装在水凝胶中,表明辐照水凝胶的增殖增加。最后,利用phalloidin结合染色来可视化封装肿瘤细胞的细胞骨架组织。我们的目标是提出一种用于体外研究的培养水凝胶的方法,模拟体内乳房组织环境及其对辐射的反应,以研究肿瘤细胞行为。

Introduction

癌症的特点是细胞的过度增殖,可以避免凋亡,也可以转移到遥远的站点1。乳腺癌是美国女性最常见的发病之一,2018估计有26.6万新发病例和4万例死亡。特别具有攻击性和难以治疗的亚型是三阴性乳腺癌(TNBC),它缺乏雌激素受体(ER)、孕激素受体(PR)和人类表皮生长因子(HER2)。放射治疗通常用于乳腺癌,以消除肿瘤切除术后的残余肿瘤细胞,但超过13%的TNBC患者在原发性肿瘤部位3仍然出现复发。

众所周知,放射治疗是有效的缓解转移和复发,因为块切除术和辐射的组合导致相同的长期生存,作为乳房切除术4。然而,最近已经表明,放射治疗与免疫功能低下设置5、6的原发性肿瘤部位局部复发有关。此外,众所周知,辐射通过诱导纤维化7改变正常组织的细胞外基质(ECM)。因此,了解辐射引起的ECM变化在控制肿瘤细胞行为中的作用是很重要的。

脱细胞组织已被用作体外模型来研究疾病8,9。这些去细胞化组织可保存ECM成分,并重述体内复合体ECM。这种脱细胞组织ECM可以进一步处理和消化,形成重组的ECM水凝胶,可用于研究细胞生长和功能10,11。例如,从脱细胞的人类脂吸剂和心肌组织中提取的可注射水凝胶作为组织工程的非侵入性方法,而从猪肺组织中提取的水凝胶被用作体外检测方法中生干细胞附着和活力12,13,14。然而,正常组织辐射损伤对ECM特性的影响尚未研究。

从ECM衍生的氢凝胶对体外体外现象的研究潜力最大。其他几种材料已经研究过,包括胶原蛋白、纤维蛋白和母蛋白,但很难综合地概括ECM13的成分。使用ECM衍生水凝胶的一个优点是ECM含有特定组织所需的蛋白质和生长因子14,15。在块切除术期间对正常组织的照射会导致ECM的显著变化,ECM衍生的水凝胶可用于在体外研究这种效应。这种方法可能导致更复杂和更准确的疾病体外模型。

在这项研究中,我们让母体乳腺脂肪垫(MFP)受到外体辐射。MFP被脱细胞制成预凝胶溶液。水凝胶是由嵌入的4T1细胞,一个小鼠TNBC细胞系形成的。研究了水凝胶材料的脑学特性,并在水凝胶内评估了肿瘤细胞动力学。由辐照的MFP制成的水凝胶增强了肿瘤细胞增殖。未来的研究将纳入其他细胞类型,以研究治疗后癌症复发背景下的细胞-细胞相互作用。

Protocol

动物研究是根据范德比尔特大学机构动物护理和使用委员会批准的机构准则和协议进行的。 1. MFP的准备和外生辐照 使用CO2窒息和宫颈脱位牺牲贫血Nu/Nu小鼠(8-10周)。 使用 70% 乙醇清洁皮肤。 使用预消毒剪刀和钳子从牺牲的小鼠身上收集乳腺脂肪垫 (MFP),在含有完整 RPMI 介质的 15 mL 锥形管中(RPMI 补充 1% 青霉素-链霉素和 10% 胎儿牛血清)(参见?…

Representative Results

使用图1A所示的程序在辐照后对MFP进行去细胞化。图为MFP预脱细胞化(图1B)和脱细胞后(图1C)。使用血氧素和欧辛(H & E)染色确认去细胞化,并使用1-([4-(Xlylazo)xlyl_azo-2-纳普霍尔染色法评估脂质含量(图2)。ECM水凝胶的学性质在37°C下也得到评估(图3)。在所有条件下,储存模量均高于损耗模量,表明水凝胶形成稳定。 <…

Discussion

这种水凝胶形成方法很大程度上取决于起始组织的数量。Murine MM 非常小,脱细胞化过程可显著减少材料(表 1)。该过程可以重复与更多的多功能一机,以提高最终产量。铣削是另一个可能导致材料损失的重要步骤。其他人已经展示了成功的低温磨机,但该协议是基于铣削通过手持砂浆和电钻与刺带附件8,17。这具有降低资本成本和最小化材料损失…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Laura L. Bronsart博士提供GFP和荧光素酶-4T1细胞,Edward L. LaGory博士就1-([4-(Xlylazo)xlyl_azo]-2-脱脂醇染色提供建议,克雷格·杜瓦尔博士为IVIS和冻合剂使用,斯科特·盖尔克博士为流流质表提供建议使用。这项研究得到了NIH资助#R00CA201304资助。

Materials

10% Neutral Buffered Formalin, Cube with Spigot VWR 16004-128
2-methylbutane Alfa Aesar 19387
AR 2000ex Rheometer TA Instruments 10D4335 rheometer
Bovine Serum Albumin Sigma-Aldrich A1933-25G
calcein acetoxymethyl (calcein AM) Molecular Probes, Inc. C1430
D-Luciferin Firefly, potassium salt Biosynth Chemistry & Biology L-8820 (S)-4,5-Dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazolecarboxylic acid potassium salt
DPX Mountant for Histology Sigma-Aldrich 06522-500ML
Dulbecco's phosphate-buffered saline Gibco 14040133
Eosin-Y with Phloxine Richard-Allan Scientific 71304 eosin
ethidium homodimer Molecular Probes, Inc. E1169 ethidium homodimer-1 (EthD-1)
Fetal Bovine Serum Sigma-Aldrich F0926-500ML
Fisher Healthcare Tissue-Plus O.C.T. Compound Fisher Scientific 23-730-571 cryostat embedding medium
Fluoromount-G SouthernBiotech 0100-01 aqueous based mounting medium
FreeZone 4.5 Labconco 7751020 lyophilizer
Hoechst 33342 Solution (20 mM) Thermo Scientific 62249 blue fluorescent dye
Hydrochloric acid Sigma-Aldrich 258148-500ML
IVIS Lumina III PerkinElmer CLS136334 bioluminescence imaging system
Kimtech Science Kimwipes Kimberly Clark delicate task wipes
n-Propanol (Peroxide-Free/Sequencing), Fisher BioReagents Fisher Scientific BP1130-500
Oil Red O Sigma-Aldrich O0625-25G 1-([4-(Xylylazo)xylyl]azo)-2-naphthol
OPS Diagnostics CryoGrinder OPS Diagnostics, LLC CG-08-02
PBS (10X), pH 7.4 Quality Biological, Inc. 119-069-151 Phosphate-buffered saline
Penicillin-Streptomycin Gibco 15140-122
Pepsin from porcine gastric mucosa Sigma-Aldrich P6887-5G pepsin
Peracetic acid Sigma-Aldrich 77240-100ML
Phalloidin-iFluor 594 Reagent (ab176757) abcam ab176757 phalloidin conjugate
Propylene glycol Sigma-Aldrich W294004-1KG-K
Richard-Allan Scientific Signature Series Bluing Reagent Richard-Allan Scientific 7301L bluing agent
Richard-Allan Scientific Signature Series Hematoxylin 7211 Richard-Allan Scientific 7211
RPMI Medium 1640 Gibco 11875-093
Sodium deoxycholate, 98% Frontier Scientific JK559522 deoxycholic acid
Sucrose Sigma-Aldrich S5016
Triton x-100 Sigma-Aldrich X100-100ML t-Octylphenoxypolyethoxyethanol
Trypsin-EDTA (0.25%), phenol red Gibco 25200-056
Whatman qualitative filter paper, Grade 4 Whatman 1004-110 grade 4 qualitative filter paper
Xylenes (Certified ACS), Fisher Chemical Fisher Scientific X5-4

References

  1. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 100 (1), 57-70 (2000).
  2. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 68 (1), 7-30 (2018).
  3. Lowery, A. J., Kell, M. R., Glynn, R. W., Kerin, M. J., Sweeney, K. J. Locoregional recurrence after breast cancer surgery: a systematic review by receptor phenotype. Breast Cancer Research and Treatment. 133 (3), 831-841 (2012).
  4. Miller, K. D., et al. Cancer treatment and survivorship statistics, 2016. CA: A Cancer Journal for Clinicians. 66 (4), 271-289 (2016).
  5. Vilalta, M., Rafat, M., Giaccia, A. J., Graves, E. E. Recruitment of Circulating Breast Cancer Cells Is Stimulated by Radiotherapy. Cell Reports. 8 (2), 402-409 (2014).
  6. Rafat, M., Aguilera, T. A., Vilalta, M., Bronsart, L. L., Soto, L. A., von Eyben, R., Golla, M. A., Ahrari, Y., Melemenidis, S., Afghahi, A., Jenkins, M. J., Kurian, A. W., Horst, K. C., Giaccia, A. J., Graves, E. E. Macrophages Promote Circulating Tumor Cell-Mediated Local Recurrence Following Radiation Therapy in Immunosuppressed Patients. Cancer Res. 75 (15), 4241-4252 (2018).
  7. Haubner, F., Ohmann, E., Pohl, F., Strutz, J., Gassner, H. G. Wound healing after radiation therapy: Review of the literature. Radiation Oncology. 7 (1), 1-9 (2012).
  8. Beachley, V. Z., et al. Tissue matrix arrays for high throughput screening and systems analysis of cell function. Nature Methods. 12 (12), 1197-1204 (2015).
  9. Tian, X., et al. Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. Nature Biomedical Engineering. 2 (6), 443-452 (2018).
  10. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia. 49, 1-15 (2017).
  11. Hinderer, S., Layland, S. L., Schenke-Layland, K. ECM and ECM-like materials — Biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews. 97, 260-269 (2016).
  12. Young, D. A., Ibrahim, D. O., Hu, D., Christman, K. L. Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomaterialia. 7 (3), 1040-1049 (2011).
  13. Singelyn, J. M., Christman, K. L., Littlefield, R. B., Schup-Magoffin, P. J., DeQuach, J. A., Seif-Naraghi, S. B. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30 (29), 5409-5416 (2009).
  14. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. Journal of Biomedical Materials Research Part A. 104 (8), 1922-1935 (2016).
  15. Bonvillain, R. W., et al. A Nonhuman Primate Model of Lung Regeneration: Detergent-Mediated Decellularization and Initial In Vitro Recellularization with Mesenchymal Stem Cells. Tissue Engineering Part A. 18 (23-24), 2437-2452 (2012).
  16. Brown, B. N., et al. Comparison of Three Methods for the Derivation of a Biologic Scaffold Composed of Adipose Tissue Extracellular Matrix. Tissue Engineering Part C: Methods. 17 (4), 411-421 (2011).
  17. Link, P. A., Pouliot, R. A., Mikhaiel, N. S., Young, B. M., Heise, R. L. Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture. Journal of Visualized Experiments. (119), 1-9 (2017).
  18. Massensini, A. R., et al. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomaterialia. 27, 116-130 (2015).
  19. Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., Fabry, B. Integrin 5 1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science. 124 (3), 369-383 (2011).
  20. Ahmadzadeh, H., et al. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences. 114 (9), E1617-E1626 (2017).
check_url/kr/59304?article_type=t

Play Video

Cite This Article
Alves, S. M., Zhu, T., Shostak, A., Rossen, N. S., Rafat, M. Studying Normal Tissue Radiation Effects using Extracellular Matrix Hydrogels. J. Vis. Exp. (149), e59304, doi:10.3791/59304 (2019).

View Video