Summary

用于量化 iPSC 衍生内皮孕激素的血管生成潜力的体外 3D 模型和计算管道

Published: May 13, 2019
doi:

Summary

来自诱导多能干细胞(iPSC-EP)的内皮祖子有可能彻底改变心血管疾病的治疗,并能够创建更忠实的心血管疾病模型。本文介绍了iPSC-EP在三维(3D)胶原蛋白微环境中的封装,并对这些细胞的血管生成电位进行了定量分析。

Abstract

诱导多能干细胞(iPSCs)是一种患者特异性增殖细胞源,可分化成任何体细胞类型。双能内皮祖细胞(EP),可以分化成组装成熟、功能性血管所必需的细胞类型,从胚胎和诱导多能干细胞中提取。然而,这些细胞在三维环境中尚未得到严格评估,其血管生成潜力的定量测量仍然难以实现。在这里,首先概述了通过荧光激活细胞分类生成和分离 iPSC-EP,然后介绍了 iPSC-EP 在胶原蛋白水凝胶中的封装和培养。这种细胞外基质(ECM)模拟微环境鼓励强健的血管反应;血管网络形成后一个星期的文化。使用开源软件量化此血管反应的计算管道的创建进行了划定。此管道专为保留毛细管丛的 3D 体系结构而设计,以以最少的用户输入可靠地识别分支数、分支点和总网络长度。

Introduction

人类脐带静脉内皮细胞(HUVECs)和其他原发内皮细胞类型已经使用了20年,以模型血管发芽和在体外发育1。这种血管平台有望阐明心血管疾病的分子和组织级机制,并可能为原始血管网络2、3的发展提供生理见解。尽管血管建模领域取得了显著进展,但能够定量建模和评估生理血管发育的”金本位”测定仍然遥遥无期。大多数已公布的协议没有充分重述血管利基,以鼓励成熟、功能性血管的形成,或者没有方法在三维上定量比较评估细胞类型的血管生成电位(3D)。

许多目前的血管模型是有限的,他们的能力,模仿生理血管利基。最常用的体外平台之一是胶状蛋白混合物的管形成测定。简单地说,HUVECs被播种为单细胞,在薄薄的凝胶层上,由从肉瘤细胞外基质(ECM)中采集的蛋白质组成;在一至两天内,HUVECs自组装成原始管4。然而,这个过程发生在双维(2D)和内皮细胞(ECs)用于这个测定不形成封闭的,空心流明,从而限制了这些研究的生理意义。最近,EC和支持细胞(例如,中生干细胞(MSCs)和围细胞)在模拟原生ECM纤维结构的3D微环境中共同培养,如胶原蛋白或纤维蛋白水凝胶5。为了模拟这种微环境下的血管发育,通常采用涂有EC的聚合物珠子。加入其他细胞分泌的外源生长因子和/或生长因子,这些细胞间质嵌入在水凝胶中,可以诱导ECs,涂覆聚合物珠子,发芽并形成单流明;然后可以计算芽和容器的数量和直径。然而,这些芽是奇异的,不形成一个封闭的,连接的网络,如在生理条件下看到,因此更让人想起肿瘤血管模型。微流体装置也被用来模拟血管利基,并促进在EC载水凝胶7,8的血管的形成。通常,血管生成生长因子梯度应用于循环细胞培养基,以诱导EC迁移和发芽。构成发达容器流明的ECs对通过微流体装置的流体流动引起的剪切应力敏感;因此,这些微流体装置捕获静态模型中不可访问的关键生理参数。但是,这些设备需要昂贵的微制造能力。

最重要的是,所有三种血管模型(2D、3D、微流体)绝大多数使用初级EC以及主要支持细胞类型。原发性细胞不能发展成有效的心血管治疗,因为细胞在植入后会产生免疫反应;此外,HUVEC 和类似的原发性细胞类型不是患者特异性的,并且不会捕获遗传倾向或预先存在的健康状况(如糖尿病)患者发生的血管异常。诱导多能干细胞(iPSCs)在过去十年中已经作为一种患者特异性增殖细胞源出现,可以分化成人体中的所有体细胞9。特别是,已经发布了协议,概述了iPSC衍生的内皮祖子(iPSC-EP)10、11的生成和隔离。iPSC-EP 是双能的,因此可以进一步分化为内皮细胞和平滑肌细胞/细胞,成熟、功能性血管的构建基块。只有一项研究令人信服地详细说明了iPSC-EP在3D微环境中的初级毛细管丛的发育12;尽管本研究对于了解iPSC-EP总成和天然和合成水凝胶的分化至关重要,但它没有定量地比较所产生血管的网络拓扑。另一项最近的研究使用聚合物珠模型比较了HUVECs和iPSC衍生的EC5的发芽。因此,显然需要进一步阐明调节iPSC-EP血管生成的物理和化学信号机制,并确定这些细胞是否适合缺血治疗和心血管疾病建 模。

在过去十年中,开发了不同的开源计算管道和骨架化算法,以量化和比较血管网络长度和连接性。例如,Charwat等人开发了一种基于Photoshop的管道,从纤维蛋白基质13、14中脂肪衍生干细胞和生长EC的共同培养中提取出一个过滤的、双光化的血管网络图像。也许最广泛使用的拓扑比较工具是AngioTool,一个由国家癌症研究所15在线发布的程序;尽管该计划被广泛采用和充分记录保真度,该计划仅限于分析两维的容器状结构和其他程序,包括AngioSys和Wimasis,共享相同的维数限制16。开发了强大的软件套件,如 Imaris、Lucis 和变形,以分析工程微血管的网络拓扑;但是,对于大多数学术实验室来说,这些套件成本高昂,并且限制了对源代码的访问,这可能会妨碍最终用户根据特定应用程序自定义算法的能力。3D切片机,一个开源磁共振成像/计算机断层扫描包,包含一个血管建模工具包,可以有效地分析3D血管网络的拓扑17;但是,分析依赖于用户手动放置网络的端点,这在分析大型数据集时可能会变得单调乏味,并且可能受用户潜意识偏见的影响。在本手稿中,详细介绍了一个可量化 3D 血管网络的计算管道。为了克服上述限制,此开源计算管道利用 ImageJ 预处理获取的共聚焦图像,将 3D 卷加载到骨架分析器中。骨架分析仪采用平行中轴变薄算法,最初由Kerschnitzki等人开发,用于分析骨细胞网络18的长度和连通性;该算法可有效地描述工程微血管的长度和连通性。

总之,该协议概述了在3D微环境中微血管网络的创建,并提供了一个开源和用户偏差自由计算管道,以随时比较iPSC-EP的血管电位。

Protocol

1. 培养介质和涂层解决方案的准备 要制备体外内丁涂层溶液,在Dulbecco的磷酸盐缓冲盐水(DPBS)中稀释体外奈丁1:100。注意:一旦稀释,不建议存储此解决方案供将来使用。 从制造商处收到无苯酚红、生长因子减少的胶状蛋白混合物(见材料表)后,在4°C的冰上解冻,直到混合物透明且流畅。将混合物放在冰上,放在层流罩中,将混合物75 μL移液器放入1.8 mL微离心管中,并立即在-20…

Representative Results

分化(图1),FACS和iPSC-EP封装在胶原蛋白水凝胶中,细胞通常会保持四舍五入24小时,然后开始迁移并形成初始流明。经过大约6天的培养后,当用明场显微镜观察时,水凝胶中可以看到一个原始的毛细管丛(图2)。在共聚焦显微镜(电影1,补充电影1)上成像固定、染色的含细胞水凝胶后,预先处理的图像将转换为骨架,从而能够分析…

Discussion

该协议涉及三种细胞培养基基中细胞的长期培养:E8、LaSR巴塞尔和EGM-2。因此,应非常小心,适当地消毒所有材料。此外,在实验室的层流罩中工作时,应始终佩戴实验室外套和乙醇清洁手套。建议经常检测支原体污染;如果在 iPSC 培养期间观察到大量碎屑或观察到分化效率突然下降,则支原体污染是可能的原因。使用该协议生成的 iPSC-EP 往往会沉积大量的 ECM,从而延长分离时间,并导致单个细胞悬浮液分离?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国心脏协会(授予J.Z.的15SDG25740035号)、美国国家卫生研究院国家生物医学成像和生物工程研究所(NIBIB)的支持(授予C.C.的赠款号EB007507),以及再生康复研究与培训联盟(AR3T,授予编号1 P2C HD086843-01,授予J.Z.)。我们要感谢Jeanne Stachowiak教授(德克萨斯大学奥斯汀分校)就共聚焦显微镜提供的技术建议。我们还感谢与塞缪尔·米赫利奇(德克萨斯大学奥斯汀分校)、艾丽西亚·艾伦博士(德克萨斯大学奥斯汀分校)、朱莉·雷特莱夫斯基博士(适应性生物技术)和莱昂·贝兰博士(范德比尔特大学)的讨论,以表达他们对三维网络的计算分析。最后,我们感谢鲍小平博士(加州大学伯克利分校)关于将iPSC区分为iPSC-EP的建议。

Materials

µ-Slide Angiogenesis Ibidi N/A A flat, glass bottom tissue-culture plate with side walls enables facile confocal imaging
96 well, round bottom, ultra low attachment microplate, sterile Corning 7007 Prevents the binding of cell-laden collagen hydrogels to the cell culture dish
Accutase STEMCELL Technologies 7920 Gentle cell detachment solution; does not degrade extracellular epitopes vital for FACS
Advanced DMEM/F12 Thermo Scientific 12634010 The base media for iPSC-EP differentiation. 
Barnstead GenPure xCAD Plus  Thermo Fisher Scientific 50136165 Water purification system; others can be readily substituted
Bovine Serum Albumin solution,7.5% in DPBS, sterile-filtered, BioXtra, suitable for cell culture Fisher Scientific A8412 To preserve cell viability when FACs sorting
CD34-PE, human (clone: AC136) Miltenyi Biotec 130-098-140 Antibody used for FACs isolation of iPSC-EPs
CHIR99021 LC Laboratories C-6556 Induces the formation of mesoderm from pluripotent stem cells
Collagen I Rat Tail High Protein 100 mg VWR 354249 Main component of the 3D microenvironment
Conical centrifuge tubes (15/50 mL) Fisher Scientific 14-959-49D/A Used to store and mix relatively large volumes of reagents and cell culture media
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Thermo Fisher Scientific D1306 To counterstain and visualize cell nuclei
DMEM/F12 Thermo Fisher Scientific 11320-082 For dilution of Matrigel and thawing of pluripotent stem cells
Dulbecco's phosphate-buffered saline (DPBS) ThermoFisher 14190-250 To wash monolayer cultures
EDTA Sigma-Aldrich E8008 For passaging of pluripotent stem cell colonies and to prevent cell aggregation when FACs sorting
Endothelial Cell Growth Medium 2 PromoCell C-22011 Promotes endothelial cell viability and proliferation
Essential 8 Medium Thermo Fisher Scientific A1517001   For maintenance of pluripotent stem cells
Glycine,BioUltra, for molecular biology, >=99.0% (NT) Sigma-Aldrich 50046 Neutralizes remaining detergent
L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate,>=95% Sigma-Aldrich A8960 Component of iPSC-EP differentiation medium
MATLAB MathWorks 1.8.0_152 Multi-paradigm numerical computing environment (free available at most academic institutions)
Matrigel Matrix GFR PhenolRF Mouse 10 mL (gelatinous protein mixture) Fisher Scientific 356231 Diluted in DMEM/F12 to coat plates for iPSC-EP differentiation
Medium-199 10X Thermo Fisher Scientific 1825015 Used to balance final hydrogel osmolarity and pH
Microcentrifuge tubes (1.7 mL) VWR 87003-294 Stores small volumes of reagents
Phosphate-buffered saline (PBS) Sigma-Aldrich P3813 The main ingredient of the immunostaining solutions
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140122 Antibiotic used after sorting to remove possible contamination from FACS instrument
Recombinant Human VEGF 165 Protein R&D Systems 293-VE Mitogen that stimulates endothelial cell proliferation and tubulogenesis
Rhodamine phalloidin Themo Fisher Scientific R415 To identify F-actin deposition and therfore outline the borders of the vascular networks
Triton X-100 (nonionic surfactant) Sigma-Aldrich X-100 Detergent used to gently permeabilize cells
Tween-20 (emulsifying reagent) Fisher Scientific BP337 Increases the binding specificity of the added antibodies
VE-Cadherin (F-8) Santa Cruz Biotechnology sc-9989  To identify 3D endothelial lumen in collagen hydrogels
Vitronectin ThermoFisher A14700 For maintenance of pluripotent stem cells
Y-27632 Selleck Chemicals S1049 Preserves pluripotent stem cell and iPSC-EP viability when dissociated and re-seeded

References

  1. Wang, K., Lin, R. -. Z., Melero-Martin, J. M. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cellular and Molecular Life Sciences. , 1-19 (2018).
  2. Kant, R. J., Coulombe, K. L. K. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomaterialia. 69, 42-62 (2018).
  3. Briquez, P. S., Clegg, L. E., Martino, M. M., Mac Gabhann, F., Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nature Reviews Materials. 1 (1), 1-15 (2016).
  4. Arnaoutova, I., George, J., Kleinman, H. K., Benton, G. The endothelial cell tube formation assay on basement membrane turns 20: State of the science and the art. Angiogenesis. 12 (3), 267-274 (2009).
  5. Bezenah, J. R., Kong, Y. P., Putnam, A. J. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports. 8 (1), 2671 (2018).
  6. Nakatsu, M. N., et al. VEGF121 and VEGF165 regulate blood vessel diameter through vascular endothelial growth factor receptor 2 in an in vitro angiogenesis model. Laboratory Investigation. 83 (12), 1873-1885 (2003).
  7. Shamloo, A., Heilshorn, S. C. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab on a Chip. 10 (22), 3061 (2010).
  8. Jeon, J. S., et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology. 6 (5), 555-563 (2014).
  9. Takahashi, K., Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 126 (4), 663-676 (2006).
  10. Kusuma, S., Macklin, B., Gerecht, S. Derivation and network formation of vascular cells from human pluripotent stem cells. Methods in Molecular Biology. 1202, 1-9 (2014).
  11. Lian, X., et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports. 3 (5), 804-816 (2014).
  12. Kusuma, S., Shen, Y. -. I., Hanjaya-Putra, D., Mali, P., Cheng, L., Gerecht, S. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 12601-12606 (2013).
  13. Charwat, V., et al. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. Journal of Biotechnology. 205, 70-81 (2015).
  14. Holnthoner, W., et al. Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. Journal of Tissue Engineering and Regenerative Medicine. 9 (2), 127-136 (2012).
  15. Zudaire, E., Gambardella, L., Kurcz, C., Vermeren, S. A computational tool for quantitative analysis of vascular networks. PLoS ONE. 6 (11), 1-12 (2011).
  16. Khoo, C. P., Micklem, K., Watt, S. M. A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro. Tissue Engineering Part C: Methods. 17 (9), 895-906 (2011).
  17. Rytlewski, J. A., Geuss, L. R., Anyaeji, C. I., Lewis, E. W., Suggs, L. J. Three-dimensional image quantification as a new morphometry method for tissue engineering. Tissue Engineering Part C: Methods. 18 (7), 507-516 (2012).
  18. Kerschnitzki, M., et al. Architecture of the osteocyte network correlates with bone material quality. Journal of Bone and Mineral Research. 28 (8), 1837-1845 (2013).
  19. Bao, X., Lian, X., Palecek, S. P. Directed endothelial progenitor differentiation from human pluripotent stem cells via Wnt activation under defined conditions. Wnt Signaling: Methods and Protocols. 1481 (1), 183-196 (2016).
  20. Crosby, C. O., et al. Quantifying the vasculogenic potential of iPSC-derived endothelial progenitors in collagen hydrogels. Tissue Engineering Part A. , (2019).
  21. Li, C. H., Tam, P. K. S. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognition Letters. 19 (8), 771-776 (1998).
  22. Kollmannsberger, P., Kerschnitzki, M., Repp, F., Wagermaier, W., Weinkamer, R., Fratzl, P. The small world of osteocytes: Connectomics of the lacuno-canalicular network in bone. New Journal of Physics. 19 (7), (2017).
  23. Crosby, C. O., Zoldan, J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regenerative Biomaterials. , (2019).
  24. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology. 25 (6), 681-686 (2007).
  25. Kniazeva, E., Kachgal, S., Putnam, A. J., Ph, D. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Engineering Part A. 17 (7-8), 905-914 (2011).
  26. Ghajar, C. M., et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophysical Journal. 94 (5), 1930-1941 (2008).
  27. Morin, K. T., Smith, A. O., Davis, G. E., Tranquillo, R. T. Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvascular Research. 90, 12-22 (2013).
  28. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
check_url/kr/59342?article_type=t

Play Video

Cite This Article
Crosby, C. O., Zoldan, J. An In Vitro 3D Model and Computational Pipeline to Quantify the Vasculogenic Potential of iPSC-Derived Endothelial Progenitors. J. Vis. Exp. (147), e59342, doi:10.3791/59342 (2019).

View Video