Summary

一种用于检测纹身油墨成分和假冒产品的两步热解-气相色谱法

Published: May 22, 2019
doi:

Summary

该方法采用质谱检测和数据评估协议, 与气相色谱联用两步热解, 可用于纹身油墨的多成分分析和假冒产品的鉴别。

Abstract

纹身油墨是复杂的成分混合物。它们中的每一个都具有不同的化学性质, 必须在化学分析中加以解决。该方法在首次解吸过程中, 分析了两步热解在线与气相色谱质谱 (py-GC-MS) 挥发性化合物的耦合。在第二次运行中, 对相同的干燥样品进行热解, 以分析非易挥发化合物, 如颜料和聚合物。这些可以通过它们的特定分解模式来识别。此外, 此方法可用于区分原装和假冒油墨。采用平均质谱和自制热解文库进行数据评价的简易筛选方法, 加快了物质识别的速度。利用专门的热解 GS-MS 数据评估软件, 可以对全色谱进行快速、可靠的比较。由于采用 GC-MS 作为分离技术, 该方法仅限于样品解吸时和热解后的挥发性物质。该方法可用于市场控制调查中的快速物质筛选, 因为它不需要样品制备步骤。

Introduction

纹身油墨是由颜料、溶剂、粘合剂、表面活性剂、增稠剂以及有时还含有防腐剂1的复杂混合物组成的。在过去的几十年里, 纹身的日益普及, 导致整个欧洲制定了解决纹身墨水安全问题的立法。在大多数情况下, 变色颜料及其杂质受到限制, 因此应通过国家实验室市场调查进行监测, 以控制其遵守法律的情况。

利用本文所述的在线热解-气相色谱质谱 (Pyrolysis-gas) 方法, 可以同时识别多种成分。由于挥发性、半挥发性和非挥发性化合物可以在同一过程中分离和分析, 因此与用于纹身油墨分析的其他方法相比, 目标化合物的种类很高。液相色谱方法大多是在有机溶剂中溶解色素的情况进行的。拉曼光谱以及傅里叶变换红外光谱 (FT-IR) 光谱被认为是识别颜料和聚合物的合适工具, 但由于标准中没有使用分离技术, 因此受到多种成分混合物的限制。实验室应用3,4。激光去光电离-飞行时间质谱 (ldi-tof-ms) 也被用于颜料和聚合物鉴定5,6。总之, 大多数方法缺乏对挥发性化合物的分析。缺乏合适的商业光谱库是所有这些方法的共同缺点。无机颜料的鉴定通常是用电感耦合等离子体谱 (icp-ms)78或能量色散 x 射线光谱 (edx)4,9进行的。此外, ft-ir 和拉曼光谱已被用于分析无机颜料, 如二氧化钛或氧化铁在其他研究领域10,11,12,13

这项研究的目的是建立一种适用于财务费用适中的标准分析实验室的方法, 以升级现有和常见的设备。这里描述的 Py-GC-MS 是一种非定量的方法, 用于识别混合物中的有机成分。在发现 py-GC-MS 筛选中的可疑物质后, 可以采用更专门的方法对目标物质进行量化。它对于分析非易挥发和不溶性物质 (如颜料和聚合物) 特别有趣。

所述方法可适用于其他应用领域的油墨和清漆。所描述的数据评估方法适用于所有的热解调查。此外, 主要来自亚洲市场的假冒产品对消费者和制造商都表现出潜在的风险来源和经济负担 (2017年在德国雷根斯堡举行的第三 ectp 3号 ectp, 2017年)。这里描述的方法可以用来比较假定的假冒油墨的特点与原来的瓶子, 类似于公布的法医方法的汽车清漆鉴定 14

Protocol

1. 纹身油墨制备及样品安装 使用25毫米中空玻璃热解管作为样品架和石英羊毛进行样品制备。 用专门的热解管的推拿器 (烘焙去污) 抓住热解管, 并将必要数量的石英羊毛与尖推子插入管中。 在热解管的每一侧插入两根钢棒 (烤出去污), 并将羊毛压缩到1-2 毫米厚的塞子中。塞子必须放置在热解管的下三分之一, 以便在热解过程中实现足够的加热。 点燃燃气燃烧器, 烤?…

Representative Results

该方法包括每个样本的两步色谱方法 (图 1)。在第一次运行时, 样品在90°c 的喷射器系统内干燥, 然后将挥发性化合物转移到色谱柱上。由于干燥过程在大多数情况下是不完整的, 残留溶剂和挥发性化合物的转移和分析。在第二次运行中, 对先前干燥的样品进行了热解, 以便利对非易挥发有机成分进行分析。 <p class="jove_content" fo:keep-together.within-page="1"…

Discussion

Py-GC-MS 是一种有用的筛选方法, 用于纹身油墨中的各种物质, 也可用于分析其他产品。与其他方法相比, 只有少量的样品制备即可进行 py-GC-MS。与诸如 Aldi-tof-ms 和 EDX 等更专业的方法相比, 大多数分析实验室都可以找到 GC-MS 设备。

热图的数据评估可能具有挑战性, 因为可能的成分列表在理论和图书馆搜索是无限的, 这也解释了物质对母体化合物在图书馆的组合是必要的。这里描?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国联邦风险评估研究所校内研究项目 (BFR #1323-103) 的支持。

Materials

99.999% Helium carrier gas Air Liquide, Düsseldorf, Germany
5975C inert XL MSD with Triple-Axis Detectors Agilent Technologies, Waldbronn, Germany
7890A gas chromatograph Agilent Technologies, Waldbronn, Germany
AMDIS software (Version 2.7) The National Institute of Standards and Technology, Gaithersburg, MD, USA can be used for GC/MS peak integration, e.g. for transfer to pyrogram evaluation software
Cold Injection System (CIS) Gerstel, Mühlheim, Germany
electron impact (EI) source Agilent Technologies, Waldbronn, Germany
Enhanced ChemStation (E02.02.1431) Agilent Technologies, Waldbronn, Germany used to generate Average Mass Spektra (AMS), can be used for peak integration and standard GC/MS library search
J&W HP-5MS GC Column, 30 m, 0.25 mm, 0.25 µm, 5975T Column Toroid Assembly Agilent Technologies, Waldbronn, Germany 29091S-433LTM
MassHunter Software Agilent Technologies, Waldbronn, Germany no Version specified, can be used for GC/MS peak integration and standard GC/MS library search
Microcapillary tube Drummond Microcaps, volume 2 µL Sigma-Aldrich, St. Louis, MO, USA P1549-1PAK
MS ChromSearch (Version 4.0.0.11) Axel Semrau GmbH & Co. KG, Sprockhövel, Germany specialized pyrogram evaluation software
NIST MS Search Program (MS Search version 2.0g) The National Institute of Standards and Technology, Gaithersburg, MD, USA used for MS and AMS library generation and corresponding substance search with selfmade and commercial libraries
NIST/EPA/NIH Mass Spectral Library (EI) mainlib & replib (Data version: NIST v11) The National Institute of Standards and Technology, Gaithersburg, MD, USA used commercial mass spectral library
Polystyrene (average Mw ~192,000) Sigma-Aldrich, St. Louis, MO, USA 430102-1KG
Pyrolysis tubes, tube type – quartz glass – lenght 25 mm; 100 Units Gerstel, Mühlheim, Germany 018131-100-00
Pyrolyzer Module for TDU Gerstel, Mühlheim, Germany
Quartz wool Gerstel, Mühlheim, Germany 009970-076-00
Steel sticks Gerstel, Mühlheim, Germany
Thermal Desorption Unit (TDU 2) Gerstel, Mühlheim, Germany
Transport adapter Gerstel, Mühlheim, Germany 018276-010-00
Tweezers for Pyrolysis tubes Gerstel, Mühlheim, Germany 009970-074-00
Zebron Z-Guard Hi-Temp Guard Column, GC Cap. Column 10 m x 0.25 mm, Ea Phenomenex Ltd. Deutschland, Aschaffenburg, Germany 7CG-G000-00-GH0

References

  1. Dirks, M., Serup, J., Kluger, N., Bäumler, W. . Tattooed skin and health. Vol. 48. Current Problems in Dermatology. , 118-127 (2015).
  2. Engel, E., et al. Establishment of an extraction method for the recovery of tattoo pigments from human skin using HPLC diode array detector technology. Analytical Chemistry. 78 (15), 6440-6447 (2006).
  3. Poon, K. W. C., Dadour, I. R., McKinley, A. J. In situ chemical analysis of modern organic tattooing inks and pigments by micro-Raman spectroscopy. Journal of Raman Spectroscopy. 39 (9), 1227-1237 (2008).
  4. Timko, A. L., Miller, C. H., Johnson, F. B., Ross, V. In vitro quantitative chemical analysis of tattoo pigments. Archives of Dermatology. 137, 143-147 (2004).
  5. Boon, J. J., Learner, T. Analytical mass spectrometry of artists’ acrylic emulsion paints by direct temperature resolved mass spectrometry and laser desorption ionisation mass spectrometry. Journal of Analytical and Applied Pyrolysis. 64, 327-344 (2002).
  6. Hauri, U. Inks for tattoos and permanent make-up / pigments, preservatives, aromatic amines, polyaromatic hydrocarbons and nitrosamines. Department of Health, Kanton Basel-Stadt. Swiss National Investigation Campaign. , (2014).
  7. Bocca, B., Sabbioni, E., Mičetić, I., Alimonti, A., Petrucci, F. Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. Journal of Analytical Atomic Spectrometry. 32 (3), 616-628 (2017).
  8. Schreiver, I., et al. Synchrotron-based nano-XRF mapping and micro-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Scientific Reports. 7, 11395 (2017).
  9. Taylor, C. R., Anderson, R. R., Gange, R. W., Michaud, N. A., Flotte, T. J. Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser. Journal of Investigative Dermatology. 97, 131-136 (1991).
  10. Namduri, H., Nasrazadani, S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science. 50 (9), 2493-2497 (2008).
  11. Burgio, L., Clark, R. J., Hark, R. R. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proceedings of the National Academy of Sciences of the United States of America. 107 (13), 5726-5731 (2010).
  12. Manso, M., et al. Assessment of toxic metals and hazardous substances in tattoo inks using Sy-XRF, AAS and Raman spectroscopy. Biological Trace Element Research. 187 (2), 596-601 (2017).
  13. Yakes, B. J., Michael, T. J., Perez-Gonzalez, M., Harp, B. P. Investigation of tattoo pigments by Raman spectroscopy. Journal of Raman Spectroscopy. 48 (5), 736-743 (2017).
  14. Yang, S. -. H., Shen, J. Y., Chang, M. S., Wu, G. J. Differentiation of vehicle top coating paints using pyrolysis-gas chromatography/mass spectrometry and multivariate chemometrics with statistical comparisons. Analytical Methods. 7, 1527-1534 (2015).
  15. Schreiver, I., Hutzler, C., Luch, A. Data from: Two-step pyrolysis-gas chromatography method with mass spectrometric detection for identification of tattoo ink ingredients and counterfeit products. Dryad Digital Repository. , (2019).
  16. Schreiver, I., Hutzler, C., Andree, S., Laux, P., Luch, A. Identification and hazard prediction of tattoo pigments by means of pyrolysis—gas chromatography/mass spectrometry. Archives of Toxicology. 90 (7), 1639-1650 (2016).
  17. Ghelardi, E., et al. Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples. Analytical and Bioanalytical Chemistry. 407 (5), 1415-1431 (2015).
  18. Russell, J., Singer, B. W., Perry, J. J., Bacon, A. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry. 400 (5), 1473-1491 (2011).
  19. Silva, M. F., Domenech-Carbo, M. T., Fuster-Lopez, L., Mecklenburg, M. F., Martin-Rey, S. Identification of additives in poly(vinylacetate) artist’s paints using PY-GC-MS. Analytical and Bioanalytical Chemistry. 397 (1), 357-367 (2010).
  20. Peris-Vincente, J., Baumer, U., Stege, H., Lutzenberger, K., Gimeno Adelantado, J. V. Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Analytical Chemistry. 81, 3180-3187 (2009).
  21. Kleinert, J. C., Weschler, C. J. Pyrolysis gas chromatographic-mass spectrometric identification of polydimethylsiloxanes. Analytical Chemistry. 52 (8), 1245-1248 (1980).
  22. Scalarone, D., Chiantore, O. Separation techniques for the analysis of artists’ acrylic emulsion paints. Journal of Separation Science. 27 (4), 263-274 (2004).
  23. Sonoda, N. Characterization of organic azo-pigments by pyrolysis-gas chromatography. Studies in Conservation. 44, 195-208 (1999).
  24. Chiantore, O., Scalarone, D., Learner, T. Characterization of artists’ crylic emulsion paints. International Journal of Polymer Analysis and Characterization. 8 (1), 67-82 (2003).
  25. Schossler, P., Fortes, I., Figueiredo Júnior, J. C. D., Carazza, F., Souza, L. A. C. Acrylic and Vinyl Resins Identification by Pyrolysis-Gas Chromatography/Mass Spectrometry: A Study of Cases in Modern Art Conservation. Analytical Letters. 46 (12), 1869-1884 (2013).
  26. Wallisch, K. L. Pyrolysis of random and block copolymers of ethyl acrylate and methyl methacrylate. Journal of Applied Polymer Science. 18, 203-222 (1974).
  27. Hauri, U. Inks for tattoos and PMU (permanent make-up) / Organic pigments, preservatives and impurities such as primary aromatic amines and nitrosamines. State Laboratory of the Canton Basel City. , (2011).
check_url/kr/59689?article_type=t&slug=a-two-step-pyrolysis-gas-chromatography-method-with-mass

Play Video

Cite This Article
Schreiver, I., Hutzler, C., Luch, A. A Two-Step Pyrolysis-Gas Chromatography Method with Mass Spectrometric Detection for Identification of Tattoo Ink Ingredients and Counterfeit Products. J. Vis. Exp. (147), e59689, doi:10.3791/59689 (2019).

View Video