Summary

哺乳动物细胞中基于CRISPR的聚集基因屏幕

Published: September 04, 2019
doi:

Summary

CRISPR-Cas9技术提供了一种有效的方法,可以精确编辑任何细胞类型的哺乳动物基因组,并代表一种执行全基因组基因筛选的新方法。此处提供了一个详细的协议,讨论成功执行池全基因组 CRISPR-Cas9 屏幕所需的步骤。

Abstract

使用CRISPR-Cas系统的基因组编辑已经大大提升了精确编辑各种生物体的基因组的能力。在哺乳动物细胞的背景下,这项技术代表了一种用于功能基因组学研究的全基因组基因筛选的新手段。面向所有开放阅读框架的指南RNA(sgRNA)库允许在单个细胞池中方便地产生数千个基因扰动,这些细胞池可以筛选特定表型,以暗示基因功能和细胞过程。公正和系统的方式。CRISPR-Cas屏幕为研究人员提供了一种简单、高效和廉价的方法来揭示细胞表型的基因蓝图。此外,对不同细胞系和不同癌症类型的屏幕进行鉴别分析可以识别肿瘤细胞中上下文必要的基因,揭示特定抗癌治疗的潜在靶点。在人类细胞中执行全基因组屏幕可能令人望而生畏,因为这需要处理数千万个细胞,并且需要分析大量数据。这些屏幕的细节,如细胞系表征、CRISPR 库注意事项,以及分析过程中了解 CRISPR 技术的局限性和功能,经常被忽视。此处提供了一个详细的协议,用于成功执行基于全基因组 CRISPR-Cas9 的屏幕。

Introduction

CRISPR-Cas 是定期聚类短纤维重复和 CRISPR 相关核酸酶的简称,由单个核酸酶蛋白(例如 Cas9)与合成导引RNA(sgRNA)复合体组成。这种核糖核蛋白复合物以Cas9酶为目标,在特定的基因组位点1诱导双链DNA断裂。双绞线断裂可以通过同源定向修复 (HDR) 修复,或者更常见的是,通过非同源端连接 (NHEJ),一种容易出错的修复机制,导致插入和/或删除 (INDELS),经常破坏基因功能1.CRISPR的效率和简单性使以前无法实现的基因组靶向水平远远超过以前的基因组编辑技术,即锌指核酸酶(ZNF)或转录活化剂样效应核酸酶(TALENS),两者都受到更高的设计复杂性,较低的转染效率,并在多路基因编辑2的局限性。

CRISPR单导RNA基因组编辑的基础研究应用使科学家能够高效、廉价地询问单个基因的功能和遗传相互作用网络的拓扑结构。使用CRISPR-Cas系统大大提高了执行功能性全基因组屏幕的能力,特别是与早期的基因扰动技术(如RNA干扰(RNAi)和基因陷阱诱变相比。特别是,RNAi受到高脱靶效果和不完全击倒,导致与CRISPR3,4,5相比,灵敏度和特异性较低,而基因陷阱方法只有在单倍体中才可行细胞功能丧失,限制了细胞模型的范围,可以询问6。CRISPR能够产生完整的基因敲除,提供了一个更具生物学上强大的系统来询问突变表型,低噪声,最小的脱靶效应和在试剂5上的一致活性。CRISPR-Cas9 sgRNA库,针对整个人类基因组现已广泛可用,允许在一个单一的实验3,7,8,9同步产生数千个基因敲除.

我们开发了独特的CRISPR-Cas9全基因组sgRNA慢病毒库,称为多伦多敲除(TKO)库(可通过Addgene获得),这些库结构紧凑,经过序列优化,便于高分辨率功能基因组学屏幕。最新的库,TKOv3,以18,000个人类蛋白质编码基因为目标,71,090个指南,利用经验数据10优化了编辑效率。此外,TKOv3 可作为单组分库(LCV2::TKOv3、Addgene ID #90294)在单个载体上表达Cas9和sgRNA,从而减轻了生成稳定的Cas9表达细胞的需求,从而在广泛的范围内实现全基因组的敲除哺乳动物细胞类型。TKOv3也可用于没有Cas9(pLCKO2::TKOv3,Addgene ID= 125517)的载体中,可用于表达Cas911的细胞。

全基因组CRISPR-Cas9编辑的细胞群可以暴露在不同的生长条件下,随着时间的推移,通过下一代测序量化了sgRNA的丰度,为评估具有可追溯遗传的细胞的辍学或富集提供了读出扰动。CRISPR 敲除库可用于识别在扰动时导致细胞健康缺陷、中度药物敏感性(例如敏感或耐药基因)、调节蛋白质表达(例如,报告人)或特定基因所需的基因通路功能和细胞状态12,13,14。例如,癌细胞系中的差分健身屏可以识别肿瘤基因的消耗或减少,并富集或增加肿瘤抑制基因3,14,15。同样,使用中间剂量的治疗药物可以揭示耐药性和致敏基因16,17。

此处提供了详细的基因组规模CRISPR-Cas9功能丧失筛选方案,使用多伦多敲除库(TKOv1或v3)在哺乳动物细胞从库生成、筛选性能到数据分析。尽管此协议已针对使用多伦多挖空库进行筛选进行了优化,但可以应用它并扩展到所有 CRISPR sgRNA 集合库。

Protocol

下面概述的实验应遵循该研究所的环境健康和安全办公室指南。 1. 集合CRISPR sgRNA慢病毒库质粒扩增 将现成的CRISPR sgRNA质粒DNA库稀释至TE(例如TKOv3)中的50纳克/μL。 使用电能电池电化库。设置总共四个电穿孔反应,如下所述。 将 2 μL 的 50 纳克/μL TKO 库添加到 25 μL 的解冻电能电池中,以预冷却的比色皿 (1.0 mm) 在冰上。 使用制造商协议建议的…

Representative Results

基因组规模CRISPR筛选工作流程概述 图 1概述了池 CRISPR 筛选工作流程,从低 MOI 下目标细胞感染 CRISPR 库慢病毒开始,以确保单个集成事件和足够的库表示(通常为 200 到 1000-折叠)。感染后,细胞用抗生素紫霉素进行治疗,以选择转导细胞。选择后,收集基线T0细胞颗粒,以评估筛选开始时的…

Discussion

CRISPR技术以其使用简单、可靠性高,被广泛采用为精确基因组编辑的首选工具。集合CRISPR筛查提供了一种在单个实验中询问数千种基因扰动的方法。在池化屏幕中,sgRNA库充当分子条形码,因为每个序列都是唯一的,并映射到目标基因。通过将基因组DNA与细胞群分离,可以通过下一代测序量化sgRNA丰度来确定引起感兴趣的表型的基因。大量并行测序方法用于量化样本中的sgRNA,这意味着多个独立的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了加拿大基因组、安大略省研究基金和加拿大卫生研究所(MOP-142375,PJT-148802)的支持。

Materials

0.22 micron filter
30°C plate incubator
37°C shaking incubator
37°C, 5% CO2 incubator
5 M NaCl Promega V4221
50X TAE buffer BioShop TAE222.4
6 N Hydrochloric acid solution BioShop HCL666.500
95% Ethanol
Alamar blue ThermoFisher Scientific DAL1025
Blue-light transilluminator ThermoFisher Scientific G6600
Bovine Serum Albumin,Heat Shock Isolation, Fraction V. Min. 98%, Biotechnology grade Bioshop ALB001.250
Dulbecco's Modification of Eagles Medium Life Technologies 11995-065 Cel culture media
Electroporation cuvettes BTX 45-0134
Electroporator BTX 45-0651
Endura electrocompetent cells Lucigen 90293
Fetal Bovine Serum GIBCO 12483-020
HEK293T packaging cells ATCC CRL-3216 recommend passage number <15
Hexadimethrine Bromide (Polybrene) Sigma H9268 Cationic polymer to enhance transduction efficiency
Hexadimethrine Bromide (Polybrene)
LB agar plates with carbenicillin
LB medium with carbenicillin
Low molecular weight DNA ladder New England Biolabs N3233S
Nanodrop spectrophotometer ThermoFisher Scientific ND-ONE-W
NEBNext Ultra II Q5 Master Mix New England Biolabs M0544L
Opti-MEM Life Technologies 31985-070 Reduced serum media
Plasmid maxi purification kit Qiagen 12963
pMD2.G (envelope plasmid) Addgene Plasmid #12259 lentiviral system
psPAX2 (packaging plasmid) Addgene Plasmid #12260 lentiviral system
Puromycin Wisent 400-160-UG
QIAquick gel extraction kit Qiagen 28704
Qubit dsDNA BR assay ThermoFisher Scientific Q32853
Qubit fluorometer ThermoFisher Scientific Q33226
RNAse A Invitrogen 12091021
S.O.C recovery medium Invitrogen 15544034
SYRB Safe DNA gel stain ThermoFisher Scientific S33102
Toronto KnockOut CRIPSR library (TKOv3) – Cas9 included Addgene Addgene ID #90203 Genome-wide CRISPR library , includes Cas9, 71,090 sgRNA
Toronto KnockOut CRIPSR library (TKOv3) – non-cas9 Addgene Addgene ID #125517 Genome-wide CRISPR library, non-Cas9, 71,090 sgRNA
Tris-EDTA (TE) solution, pH8.0
UltraPure agarose ThermoFisher Scientific 16500500
Wizard genomic DNA purification kit Promega A1120
X-tremeGENE 9 DNA transfection reagent Roche 06 365 809 001 Lipid based transfection reagent

References

  1. Jiang, F., Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics. 46, 505-529 (2017).
  2. Baliou, S., et al. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology. 53 (2), 443-468 (2018).
  3. Hart, T., et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. 163 (6), 1515-1526 (2015).
  4. Morgens, D. W., Deans, R. M., Li, A., Bassik, M. C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 34 (6), 634-636 (2016).
  5. Evers, B., et al. CRISPR knock-out screening outperforms shRNA and CRISPRi in identifying essential genes. Nature Biotechnology. 34 (6), 631-633 (2016).
  6. Miles, L. A., Garippa, R. J., Poirier, J. T. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. The FEBS Journal. 283 (17), 3170-3180 (2016).
  7. Wang, T., Wei, J. J., Sabatini, D. M., Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343 (6166), 80-84 (2014).
  8. Wang, T., et al. Identification and characterization of essential genes in the human genome. Science. 350 (6264), 1096-1101 (2015).
  9. Sanson, K. R., et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 9 (1), 5416 (2018).
  10. Hart, T., et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knock-out Screens. G3: Genes|Genomes|Genetics. 7 (8), 2719-2727 (2017).
  11. Mair, B., Tomic, J., et al. Essential gene profiles for human pluripotent stem cells identify uncharacterized genes and substrate dependencies. Cell Reports. 27 (2), 599-615 (2019).
  12. Shalem, O., et al. Genome-scale CRISPR-Cas9 knock-out screening in human cells. Science. 343 (6166), 84-87 (2014).
  13. Sharma, S., Petsalaki, E. Application of CRISPR-Cas9 Based Genome-Wide Screening Approaches to Study Cellular Signalling Mechanisms. International Journal of Molecular Sciences. 19 (4), (2018).
  14. Steinhart, Z., et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nature Medicine. 23 (1), 60-68 (2017).
  15. Wang, T., et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 168 (5), 890-903 (2017).
  16. Zimmermann, M., et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 559 (7713), 285-289 (2018).
  17. Deans, R. M., et al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology. 12 (5), 361-366 (2016).
  18. Trinh, T. J. J., Bloom, F., Hirsch, V. STBL2: an Escherichia coli strain for the stable propagation of retroviral clones and direct repeat sequences. Focus. 16, 78-80 (1994).
  19. Hart, T., Moffat, J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics. 17, 164 (2016).
  20. Wang, G. Z. M., et al. Identifying drug-gene interactions from CRISPR knock-out screens with drugZ. bioRxiv. , (2017).
  21. Pedregosa, F. V., G, , et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 12, 2825-2830 (2011).
  22. Ketela, T., et al. A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genomics. 12, 213 (2011).
  23. Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Nature Review Genetics. 19 (2), 67-80 (2018).
  24. Hartenian, E., Doench, J. G. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS Journal. 282 (8), 1383-1393 (2015).
  25. Li, W., et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knock-out screens. Genome Biology. 15 (12), 554 (2014).
  26. Sheel, A., Xue, W. Genomic Amplifications Cause False Positives in CRISPR Screens. Cancer Discovery. 6 (8), 824-826 (2016).
  27. Meyers, R. M., et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics. 49 (12), 1779-1784 (2017).
  28. Henser-Brownhill, T., Monserrat, J., Scaffidi, P. Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays. Epigenetics. 12 (12), 1065-1075 (2017).
check_url/kr/59780?article_type=t

Play Video

Cite This Article
Chan, K., Tong, A. H. Y., Brown, K. R., Mero, P., Moffat, J. Pooled CRISPR-Based Genetic Screens in Mammalian Cells. J. Vis. Exp. (151), e59780, doi:10.3791/59780 (2019).

View Video