Summary

新生儿小猪体内胸腺菌的活体力学试验方法

Published: December 19, 2019
doi:

Summary

这里介绍了在新生儿小猪模型中对胸腺丛进行体内生物力学测试的方法。

Abstract

新生儿胸鼓性麻痹(NBPP)是一种在位于颈部和肩部区域的神经复合物(统称为胸痛(BP)的神经复合物的分娩过程中发生的拉伸损伤。尽管最近在产科护理方面取得了进展,但NBPP问题仍然是一个全球卫生负担,每1 000名活产婴儿的发病率为1.5例。更严重的这种损伤可能导致手臂从肩部向下永久瘫痪。NBPP 的预防和治疗有助于了解新生儿 BP 神经在拉伸时的生物力学和生理反应。目前对新生儿BP的了解是从成年动物或尸体BP组织而不是体内新生儿BP组织推断而成的。本研究描述了一种在体内的机械检测装置和在新生儿小猪中进行体内生物力学测试的程序。该器件由夹具、执行器、称重传感器和摄像机系统组成,用于应用和监控体内的应变和负载,直至故障。摄像机系统还允许监控破裂期间的故障位置。总体而言,提出的方法允许详细的生物力学表征新生儿BP时,遭受拉伸。

Introduction

尽管最近产科取得了进展,但英国石油公司(BP)综合体的拉伸损伤造成的NBPP问题仍然是一个全球性的健康负担,每1 000名活产1.5例,1、2。相关的风险因素可以是母体(即超重、产妇糖尿病、子宫异常、BP 麻痹史)、胎儿(即胎儿大体肌瘤)或与出生相关(即肩部难产、长时间劳动、用钳子或真空吸尘器辅助分娩、胸腔表达3)。虽然在某些情况下这些并发症是不可避免的,但 NBPP 的预防和治疗有助于了解新生儿 BP 在拉伸时的生物力学和生理反应。

据报道,英国石油公司的生物力学研究使用了成年动物和人类尸体组织,并显示出4、5、6、7、8、9、10、11、12、13、14、15之间的显著差异。复杂BP组织生物力学特性的临床相关性值得新生儿动物模型以及体内生物力学测试方法。此外,在复杂的真实分娩场景中研究 BP 拉伸损伤的局限性增加了对计算机模型的依赖,这些模型提供了能够调查各种交付并发症和技术影响的方法。这些模型的临床相关性的关键是它们的生物保真度(类似人类的反应)。Gonik等人16和格林等人17提供的计算模型依赖于兔子和大鼠神经组织,而不是新生儿BP组织。在临床相关的新生儿动物模型中进行体内生物力学测试,可以填补新生儿BP数据不可用的重要空白。

目前的研究描述了一种体内机械测试装置和程序,用于对3-5天大的约克郡雄性新生儿小猪进行生物力学测试。该器件由夹具、执行器、称重传感器和摄像机系统组成,在发生故障时应用和监控体内的应变和负载。摄像机系统还允许监控破裂期间的故障位置。总体而言,该系统允许在拉伸时对新生儿BP进行详细的生物力学表征,从而为体内机械故障提供BP的阈值应变和应力。获得的数据可以进一步改善现有计算模型的人类行为(生物保真度),这些模型旨在调查在与NBPP相关的交付场景中外源力和内源力对BP拉伸的影响。

Protocol

德雷塞尔大学动物护理和使用机构委员会批准了所有程序(#20704)。 1. 动物到达和适应 在抵达后隔离1⁄2天大的小猪至少24小时。 在清洁和消毒的不锈钢笼子里(36 in x 48 x 36 in)的猪窝,用猪奶替代器喂养。 将室温保持在 85 °F,以确保热中性环境。 2. 实验日 在实验前 2 小时取出进给。 用肌内注射氯胺酮(10~40?…

Representative Results

图5和图6分别显示了来自BP丛的四个片段(四个标记之间)的代表性加载时间图和应变。在35%的平均失效应变下,获得8.3 N的故障负荷报告新生儿BP在拉伸时的生物力学反应。神经的某些区域经历比其他人更高的菌株,表明神经长度上不均匀损伤。摄像机数据允许报告故障位置与前场接近。 <p class="jove_content" fo:keep-together.within-…

Discussion

关于BP组织拉伸的生物力学反应的现有文献显示广泛的阈值以及方法差异4,6,8,18,19,20,21,22,23。公布结果的变化可能是由于组织处理的差异(例如固定组织与…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本出版物中报道的研究得到了国家卫生研究院尤尼斯·肯尼迪·施莱佛国家儿童健康和人类发展研究所的支持,该奖编号为R15HD093024,并得到了国家科学基金会CAREER奖编号 1752513。

Materials

Omega Subminature Tension & Compression Load Cell Omega LCM201-200N 200N load cell
Basler acA640-120uc camera Basler acA640-120uc
Feedback Linear Actuator Progressive Automations PA-14P 10" stroke, 150lb force, 15mm/s speed
Motion Tracking Software Kinovea N/A Open Source
Proramming Software – MATLAB Mathworks N/A version 2018A
Surgical instruments
Forceps Fine Science Tools Inc 11006-12 and 11027-12 or 11506-12
Hemostats Fine Science Tools Inc 13009-12
Scissors Fine Science Tools Inc 14094-11 or 14060-09

References

  1. Chauhan, S. P., Blackwell, S. B., Ananth, C. V. Neonatal brachial plexus palsy: Incidence, prevalence, and temporal trends. Seminars in Perinatology. 38 (4), 210-218 (2014).
  2. Foad, S. L., Mehlman, C. T., Ying, J. The epidemiology of neonatal brachial plexus palsy in the United States. Journal of Bone and Joint Surgery – Series A. 90 (60), 1258-1264 (2008).
  3. García Cena, C. E., et al. Skeletal modeling, analysis and simulation of upper limb of human shoulder under brachial plexus injury. Advances in Intelligent Systems and Computing. 252, 195-207 (2014).
  4. Marani, E., van Leeuwen, J. L., Spoor, C. W. The tensile testing machine applied in the study of human nerve rupture: a preliminary study. Clinical Neurology and Neurosurgery. 95, S33-S35 (1993).
  5. Zapałowicz, K., Radek, A. Mechanical properties of the human brachial plexus. Neurologia i Neurochirurgia Polska. 34 (6), 89-93 (2000).
  6. Singh, A., Shaji, S., Delivoria-Papadopoulos, M., Balasubramanian, S. Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch. Journal of Brachial Plexus and Peripheral Nerve Injury. 13 (1), e8-e14 (2018).
  7. Driscoll, P. J., et al. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. Journal of Orthopaedic Research. 20 (2), 370-375 (2002).
  8. Zapalowicz, K., Radek, A. Experimental investigations of traction injury of the brachial plexus. Model and results. Annales Academiae Medicae Stetinensis. 51 (2), 11-14 (2005).
  9. Ma, Z., et al. In vitro and in vivo mechanical properties of human ulnar and median nerves. Journal of Biomedical Materials Research – Part A. 101 (9), 2718-2725 (2013).
  10. Rydevik, B. L., et al. An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. Journal of Orthopaedic Research. 8 (5), 694-701 (1990).
  11. Kwan, M. K., Wall, E. J., Massie, J., Garfin, S. R. Strain, stress and stretch of peripheral nerve rabbit experiments in vitro and in vivo. Acta Orthopaedica. 63 (3), 267-272 (1992).
  12. Takai, S., et al. In situ strain and stress of nerve conduction blocking in the brachial plexus. Journal of Orthopaedic Research. 20 (6), 1311-1314 (2002).
  13. Zhe, S., Feng, T., Sun, C., Ma, H. Tensile mechanical properties of the brachial plexus of experimental animals. Journal of Clinical Rehabilitative Tissue Engineering Research. 14 (20), 3730-3733 (2010).
  14. Alexander, M. J., Barkmeier-Kraemer, J. M., Geest, J. P. Vande Biomechanical properties of recurrent laryngeal nerve in the piglet. Annals of Biomedical Engineering. 38 (8), 2553-2562 (2010).
  15. Zilic, L., et al. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. Journal of Anatomy. 227 (3), 302-314 (2015).
  16. Gonik, B., Zhang, N., Grimm, M. J. Prediction of brachial plexus stretching during shoulder dystocia using a computer simulation model. American Journal of Obstetrics and Gynecology. 189 (4), 1168-1172 (2003).
  17. Grimm, M. J., Costello, R. E., Gonik, B. Effect of clinician-applied maneuvers on brachial plexus stretch during a shoulder dystocia event: Investigation using a computer simulation model. Obstetrical and Gynecological Survey. 203 (4), (2011).
  18. Kawai, H., et al. Stretching of the brachial plexus in rabbits. Acta Orthopaedica. 60 (6), 635-638 (1989).
  19. Narakas, A. O. Lesions found when operating traction injuries of the brachial plexus. Clinical Neurology and Neurosurgery. 95, S56-S64 (1993).
  20. Kleinrensink, G. J., et al. Upper limb tension tests as tools in the diagnosis of nerve and plexus lesions – Anatomical and biomechanical aspects. Clinical Biomechanics. 15 (1), 9-14 (2000).
  21. Zapałowicz, K., Radek, A. Mechanical properties of the human brachial plexus. Neurologia, i Neurochirurgia Polska. 34 (6), 89-93 (2000).
  22. Singh, A., Lu, Y., Chen, C., Cavanaugh, J. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. Journal of Biomechanics. 39 (9), 1669-1676 (2006).
  23. Singh, A., Lu, Y., Chen, C., Kallakuri, S., Cavanaugh, J. M. A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash Journal. 50, 601-623 (2006).
  24. Gonik, B., et al. The timing of congenital brachial plexus injury: A study of electromyography findings in the newborn piglet. American Journal of Obstetrics and Gynecology. 178 (4), 688-695 (1998).
check_url/kr/59860?article_type=t

Play Video

Cite This Article
Singh, A., Magee, R., Balasubramanian, S. Methods for In Vivo Biomechanical Testing on Brachial Plexus in Neonatal Piglets. J. Vis. Exp. (154), e59860, doi:10.3791/59860 (2019).

View Video