Summary

活细胞荧光显微镜研究细菌的亚细胞蛋白定位和细胞形态变化

Published: November 23, 2019
doi:

Summary

本文提供了一个分步指南,以研究蛋白质亚细胞定位动力学,并使用高分辨率荧光显微镜监测葡萄球菌和金黄色葡萄球菌的形态变化。

Abstract

对影响细菌细胞分裂和细胞形状的因素的调查通常与高分辨率荧光显微镜一起进行,因为在总体水平上进行的观察可能无法真正反映单个细胞水平上发生的情况。活细胞延时显微镜使研究人员能够监测细胞分裂或细胞形态的变化,从而提供有关蛋白质亚细胞定位和基因表达时间的宝贵见解,从而有可能有助于回答重要的生物学问题。在这里,我们描述了使用高分辨率去卷积显微镜监测亚基利杆菌和金黄色葡萄球菌的形态变化的协议。本报告的目的是提供一个简单明了的协议,可以由有兴趣进行荧光显微镜实验的其他研究人员采用,以研究细菌和其他生物体的不同生物过程。

Introduction

最近显微镜技术1,2的进步,大大加强了细菌细胞生物学领域。在其他仪器中,能够进行延时荧光显微镜实验的显微镜仍然是一种宝贵的工具。研究者可以使用荧光蛋白实时监测各种生理事件,如绿色荧光蛋白(GFP)基转录和翻译报告器融合、荧光D-氨基酸(FDAA)3,或者使用其他污渍标记细胞壁、膜和DNA。因此,荧光显微镜在微生物细胞生物学家中仍然很受欢迎也就不足为奇了。除了简单地显示末端表型,提供有关观察到的表型如何产生的信息使用延时显微镜可以增加重大价值的发现,并可能提供线索,什么细胞过程是潜在的药物候选者的目标4

本文提供了使用全电动、倒置广域荧光显微镜进行高分辨率成像的协议(参见材料表)。这些方案可以适应其他荧光显微镜的需求,这些显微镜能够进行延时显微镜检查。虽然这里讨论的软件对应于材料表中所示的特定制造商提供的软件,但其他显微镜制造商通常提供的软件或免费提供的 ImageJ5具有用于分析显微镜数据的等效工具。对于时间推移不利于的条件,可以进行时间过程实验,如本文所述。此处描述的协议为研究两种不同细菌物种的树型变化提供了详细的指南:B. subtilisS. aureus。有关使用的菌株,请参阅表 1。

Protocol

1. 一般增长条件 用抗生素(必要时)补充2 mL的适当生长介质,并结合要成像的菌株单一菌群。在摇动的培养箱中,在22°C中孵育这些种子培养物过夜。注:本文中使用的特定细菌生长条件在代表性结果部分下提供。 在125 mL瓶中稀释新鲜介质中的过夜培养物1:20,补充抗生素(如果需要)。 在摇动的培养箱中生长37°C的培养基,直到中对数阶段(OD600 = 0.5)。?…

Representative Results

GpsB 表型以前我们已经表明,Sa-GpsB是一种必需的蛋白质,因为使用反义RNA消耗GpsB会导致细胞解毒9。在这里,我们描述了如何使用本文中描述的延时显微镜协议来捕获各种细胞分裂表型的出现和蛋白质定位的变化。为此,S. aureus菌株 RB143 [SH1000 怀有 pEPSA5(空载体)] 和 GGS8 [SH1000 窝藏 pGG59(Pxyl-gpsB反义布猫) ] 之前报告的<…

Discussion

显微镜一直是有关微生物的研究的支柱。鉴于其微米级细胞大小,单细胞水平研究传统上依赖于电子显微镜(EM)。虽然EM近年来已经成为一种非常强大的技术,但它除了有限的用户访问16之外,还有它自己的内在限制。荧光显微镜技术的改进和不同荧光探针(如FDAA3)的开发为微生物细胞生物学家提供了大量工具,用于研究活细胞中的各种细胞过程。研究人员?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢我们的实验室成员对本文的评论。这项工作由南佛罗里达大学(PE)的启动赠款资助。

Materials

Agarose Fisher BioReagents BP160-100 Molecular Biology Grade – Low EEO
DAPI Invitrogen D3571 Microscopy
FM4-64 Invitrogen T3166 Microscopy
Glass bottom dish MatTek P35G-1.5-14-C Microscopy
IPTG Fisher BioReagents BP1755-10 Dioxane-free
Microscope GE DeltaVision Elite Customized Olympus IX-71 Inverted Microscope Stand; Custom Illumination Tower and Transmitted Light Illuminator Module. Objectives: PLAPON 60X (N.A. 1.42, WD 0.15 mm); OLY 100X OIL (N.A. 1.4, WD 0.12 mm); DIC Prism Nomarski for 100X Objective; CoolSnap HQ2 camera; SSI Assembly 7-color; Environmental control chamber – opaque.
PC190723 MilliporeSigma 3445805MG FtsZ inhibitor
SoftWorx GE Manufacturer-supplied imaging software

References

  1. Coltharp, C., Xiao, J. Superresolution microscopy for microbiology. Cellular Microbiology. 14 (12), 1808-1818 (2012).
  2. Holden, S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Current Opinion in Microbiology. 43, 84-91 (2018).
  3. Hsu, Y. P., et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chemical Science. 8 (9), 6313-6321 (2017).
  4. Nonejuie, P., Burkart, M., Pogliano, K., Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proceedings of the National Academy of Sciences of the USA. 110 (40), 16169-16174 (2013).
  5. Rueden, C. T., et al. ImageJ2: ImageJ for the next generation of scientific image data. BioMed Central Bioinformatics. 18 (1), 529 (2017).
  6. Colville, K., Tompkins, N., Rutenberg, A. D., Jericho, M. H. Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir. 26 (4), 2639-2644 (2010).
  7. McNally, J. G., Karpova, T., Cooper, J., Conchello, J. A. Three-dimensional imaging by deconvolution microscopy. Methods. 19 (3), 373-385 (1999).
  8. Wallace, W., Schaefer, L. H., Swedlow, J. R. A workingperson’s guide to deconvolution in light microscopy. Biotechniques. 31 (5), 1076-1082 (2001).
  9. Eswara, P. J., et al. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. Elife. 7, (2018).
  10. Haeusser, D. P., Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nature Reviews Microbiology. 14 (5), 305-319 (2016).
  11. Du, S., Lutkenhaus, J. At the Heart of Bacterial Cytokinesis: The Z Ring. Trends in microbiology. , (2019).
  12. Haranahalli, K., Tong, S., Ojima, I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorganic and Medicinal Chemistry. 24 (24), 6354-6369 (2016).
  13. Brzozowski, R. S., et al. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Frontiers in Microbiology. 10, 623 (2019).
  14. Elsen, N. L., et al. Mechanism of action of the cell-division inhibitor PC190723: modulation of FtsZ assembly cooperativity. Journal of the American Chemical Society. 134 (30), 12342-12345 (2012).
  15. Haydon, D. J., et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science. 321 (5896), 1673-1675 (2008).
  16. Pilhofer, M., Ladinsky, M. S., McDowall, A. W., Jensen, G. J. Bacterial TEM: new insights from cryo-microscopy. Methods in Cell Biology. 96, 21-45 (2010).
  17. Ni, Q., Mehta, S., Zhang, J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. Federation of European Biochemical Societies Journal. 285 (2), 203-219 (2018).
  18. Weiss, C. A., Hoberg, J. A., Liu, K., Tu, B. P., Winkler, W. C. Single-Cell Microscopy Reveals That Levels of Cyclic di-GMP Vary among Bacillus subtilis Subpopulations. Journal of Bacteriology. 201 (16), (2019).
  19. Schneider, J. P., Basler, M. Shedding light on biology of bacterial cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 371 (1707), (2016).
  20. Yao, Z., Carballido-Lopez, R. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annual review of microbiology. 68, 459-476 (2014).
  21. Ettinger, A., Wittmann, T. Fluorescence live cell imaging. Methods in Cell Biology. 123, 77-94 (2014).
  22. Fredborg, M., et al. Automated image analysis for quantification of filamentous bacteria. BioMed Central Microbiology. 15, 255 (2015).
  23. Ursell, T., et al. precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BioMed Central Biology. 15 (1), 17 (2017).
check_url/kr/59905?article_type=t

Play Video

Cite This Article
Brzozowski, R. S., White, M. L., Eswara, P. J. Live-Cell Fluorescence Microscopy to Investigate Subcellular Protein Localization and Cell Morphology Changes in Bacteria. J. Vis. Exp. (153), e59905, doi:10.3791/59905 (2019).

View Video