Summary

在 Cu(In、Ga)Se2薄膜太阳能电池中制造银纳米线电极与 CdS 缓冲层之间的强健纳米级接触

Published: July 19, 2019
doi:

Summary

在本协议中,我们描述了在CIGS薄膜太阳能电池中制造银纳米线网络和CdS缓冲层之间强健纳米级接触的详细实验过程。

Abstract

银纳米线透明电极已作为Cu(In,Ga)Se2薄膜太阳能电池的窗口层。裸银纳米线电极通常会导致电池性能极差。使用中等导电性透明材料(如氧化锡或氧化锌)嵌入或夹层银纳米线可以提高电池性能。但是,溶液处理的基质层会导致透明电极和 CdS 缓冲液之间的大量界面缺陷,最终导致电池性能低下。本手稿描述了如何在 Cu(In,Ga) Se2太阳能电池中制造银纳米线电极与底层 CdS 缓冲层之间的强健电气接触,使用无基质银纳米线透明,实现高电池性能电极。我们采用的方法制造的无基质银纳米线电极证明,银纳米线电极基电池的电荷载体收集能力与具有溅射ZnO:Al/i-ZnO的标准电池的电荷载体收集能力一样好,只要银纳米线和CdS 具有高质量的电气触点。通过在银纳米线表面上沉积一层薄至 10 nm 的额外 CdS 层,实现了高质量的电气接触。

Introduction

银纳米线 (AgNW) 网络作为氧化锡 (ITO) 透明导电薄膜的替代品得到了广泛的研究,因为它在降低加工成本和更好的机械灵活性。因此,经过解决方案处理的 AgNW 网络透明导电电极 (TE) 已应用于 Cu(In、Ga)Se2 (CIGS) 薄膜太阳能电池 1、2、3、4、5,6.溶液加工的AgNW CTCEs通常以嵌入式AgNW或三明治-AgNW结构的形式制成,采用导电基质,如PEDOT:PSS、ITO、ZnO等7、8、9、 10,11矩阵层可以增强 AgNW 网络空白空间中电荷载体的收集。

然而,基质层在CIGS薄膜太阳能电池12、13中的基质层和底层CdS缓冲层之间会产生界面缺陷。界面缺陷通常会导致电流密度-电压 (J-V) 曲线扭结,导致电池中的填充系数 (FF) 低,这不利于太阳能电池的性能。我们之前报告了一种方法,通过有选择地在 AgGW 和 CdS 缓冲层14之间沉积另一个薄 CdS 层(第 2CdS 层)来解决此问题。附加 CdS 层的加入增强了 AgNW 和 CdS 图层之间的连接中的接触属性。因此,AgNW网络中的载波集合得到了极大的改进,并且提高了信元性能。在本协议中,我们描述了在 CIGS 薄膜太阳能电池中使用第二 CdS 层在 AgNW 网络和 CdS缓冲层之间制造强健电气接触的实验过程。

Protocol

1. 直流磁控溅射制备莫涂层玻璃 将清洁的玻璃基板装载到直流磁控管中,并泵入 4 x 10-6 Torr 以下。 输送 Ar 气体,并将工作压力设置为 20 mTorr。 打开等离子,将直流输出功率增加到 3 kW。 在目标清洁预溅 3 分钟后,开始 Mo 沉积,直到 Mo 薄膜厚度达到约 350 nm。 将工作压力设置为 15 mTorr,同时保持相同的输出功率(即 3 kW)。 恢复 Mo 沉积,直到 Mo 的总厚度?…

Representative Results

图3显示了CIGS太阳能电池的层结构,其标准ZnO:Al/i-ZnO和(b)AgNW TCE。CIGS的表面形态粗糙,AgNW层与底层CdS缓冲层之间可形成纳米级间隙。如图3A所示,第2层CdS层可以选择性地沉积在纳米尺度的间隙上,以产生稳定的电气接触。有关电气接触的形成以及电气特性和器件性能的增强的详细说明,请参阅参考14。在参考14中也发现了AgNW和C…

Discussion

请注意,必须优化第 2CdS 层的沉积时间,以实现最佳的单元性能。随着沉积时间的延长,第2CdS层的厚度增加,因此,电气接触将得到改善。然而,第2CdS层的进一步沉积将导致更厚的层,减少光吸收,并且设备效率将下降。我们在第二CdS层的沉积时间为10分钟,实现了最佳的细胞性能,并确定了细胞效率降低,沉积时间延长。

为了评估我们的方法,我们比较?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了韩国能源研究所(B9-2411)的内部研发计划(B9-2411)和基础科学研究计划的支持,该计划由韩国国家研究基金会(NRF)资助。教育 (授予 NRF-2016R1D1A1B03934840)。

Materials

Mo Materion Purity: 3N5 Mo sputtering
Cu 5N Plus Purity: 4N7 CIGS deposition
In 5N Plus Purity: 5N CIGS deposition
Ga 5N Plus Purity: 5N CIGS deposition
Se 5N Plus Purity: 5N CIGS deposition
Ammonium acetate Alfa Aesar 11599 CdS reaction solution
Ammonium hydroxide Alfa Aesar L13168 CdS reaction solution
Cadmium acetate dihydrate Sigma-Aldrich 289159 CdS reaction solution
Thiourea Sigma-Aldrich T8656 CdS reaction solution
Silver Nanowire ACSMaterial AgNW-L30 AgNW dispersion

References

  1. Lee, S., et al. Determination of the lateral collection length of charge carriers for silver-nanowire-electrode-based Cu(In,Ga)Se2 thin-film solar cells. Solar Energy. 180, 519-523 (2019).
  2. Langley, D., et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology. 24 (45), 452001 (2013).
  3. Chung, C. -. H., et al. Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Advanced Materials. 24 (40), 5499-5504 (2012).
  4. Liu, C. -. H., Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Research Letters. 6 (1), (2011).
  5. Yu, Z., et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Advanced Materials. 23 (5), 664-668 (2011).
  6. Chung, C. -. H., Hong, K. -. H., Lee, D. -. K., Yun, J. H., Yang, Y. Ordered vacancy compound formation by controlling element redistribution in molecular-level precursor solution processed CuInSe2 thin films. Chemistry of Materials. 27 (21), 7244-7247 (2015).
  7. Kim, A., Won, Y., Woo, K., Kim, C. -. H., Moon, J. Highly transparent low resistance ZnO/Ag Nanowire/ZnO composite electrode for thin film solar cells. ACS Nano. 7 (2), 1081-1091 (2013).
  8. Singh, M., Jiu, J., Sugahara, T., Suganuma, K. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process. ACS Applied Materials and Interfaces. 6 (18), 16297-16303 (2014).
  9. Kim, A., Won, Y., Woo, K., Jeong, S., Moon, J. All-solution-processed indium-free transparent composite electrodes based on Ag Nanowire and Metal Oxide for thin-film solar cells. Advanced Functional Materials. 24 (17), 2462-2471 (2014).
  10. Shin, D., Kim, T., Ahn, B. T., Han, S. M. Solution-processed Ag Nanowires + PEDOT:PSS hybrid electrode for Cu(In,Ga)Se2 thin-film solar cells. ACS Applied Materials and Interfaces. 7 (24), 13557-13563 (2015).
  11. Wang, M., Choy, K. -. L. All-nonvacuum-processed CIGS solar cells using scalable Ag NWs/AZO-based transparent electrodes. ACS Applied Materials and Interfaces. 8 (26), 16640-16648 (2016).
  12. Jang, J., et al. Cu(In,Ga)Se2 thin film solar cells with solution processed silver nanowire composite window layers: buffer/window junctions and their effects. Solar Energy Materials and Solar Cells. 170, 60-67 (2017).
  13. Chung, C. -. H., Bob, B., Song, T. -. B., Yang, Y. Current-voltage characteristics of fully solution processed high performance CuIn(S,Se)2 solar cells: crossover and red kink. Solar Energy Materials and Solar Cells. 120, 642-646 (2014).
  14. Lee, S., et al. Robust nanoscale contact of silver nanowire electrodes to semiconductors to achieve high performance chalcogenide thin film solar cells. Nano Energy. 53, 675-682 (2018).
check_url/kr/59909?article_type=t

Play Video

Cite This Article
Lee, S., Cho, K. S., Song, S., Kim, K., Eo, Y., Yun, J. H., Gwak, J., Chung, C. Fabrication of Robust Nanoscale Contact between a Silver Nanowire Electrode and CdS Buffer Layer in Cu(In,Ga)Se2 Thin-film Solar Cells. J. Vis. Exp. (149), e59909, doi:10.3791/59909 (2019).

View Video