Summary

使用RNA测序识别循环RNA

Published: November 14, 2019
doi:

Summary

循环RNA(循环RNA)是非编码RNA,在转录调节和蛋白质之间的中介相互作用中可能发挥作用。在对构建环RNA测序库的不同参数进行评估后,利用RNase R预处理的搁浅总RNA库制备编制了一个协议,并在此提出。

Abstract

循环RNA(循环RNA)是一类非编码RNA,涉及微RNA(miRNA)调节、蛋白质-蛋白质相互作用的中介和父母基因转录的调节等功能。在传统的下一代RNA测序(RNA-seq)中,在mRNA库的构建过程中,由于多A选择,循环RNA通常被忽视,或者发现丰度非常低,因此难以分离和检测。在这里,通过比较库制备试剂盒、预处理选项和各种RNA输入总量,优化了circRNA库构建协议。测试了两个市售全转录组库制备试剂盒,带和无RNase R预处理,并使用可变量的总RNA输入(1至4μg)。测试。最后,多种组织类型;包括肝、肺、淋巴结和胰腺;以及多个大脑区域;包括小脑、下垂叶、中时陀螺、腹皮层和上额前陀螺;比较以评估组织类型的环RNA丰度。使用六种不同的环RNA检测工具(find_circ、CIRI、Mapsplice、KNIFE、DCC和CIRCexplorer)对生成的RNA-seq数据进行分析后发现,具有RNase R预处理和4μgRNA输入的搁浅总RNA库制备试剂盒是最佳选择用于识别最高相对数量的环RNA 的方法。与以前的发现一致,与其他组织类型相比,在脑组织中观察到的环RNA的富集性最高。

Introduction

循环RNA(CircRNA)是内源性的、非编码的RNA,由于它们在真核转录组1、2、3中的普遍表达而备受关注。它们形成于外向的回拼接时,因此最初被认为是拼接伪像4,5。然而,最近的研究表明,circRNA表现出细胞类型,组织和发育阶段的具体表达3,6和进化保存2,3。此外,它们还参与调节蛋白质-蛋白质相互作用7、微RNA(miRNA)结合3、8、9、10和调节亲基因转录11。

在经典RNA测序(RNA-seq)中,由于多A选择mRNA,在库构建过程中,循环RNA可能完全丢失,或者由于丰度低,可能难以分离。然而,最近的circRNA表征研究已经纳入了使用RNase R的预处理步骤,以丰富circRNA2,12,13。RNase R 是一种驱外酶,可消化线性RNA,留下圆形RNA结构。CircRNA扩充方案通过生成和比较来自两个市售的全转录组构建试剂盒的数据进行优化,无论是否采用RNase R预处理步骤,并使用不同量的总RNA输入(1至4μg)。接下来,优化的协议用于评估五个不同大脑区域(小脑 [BC]、下垂叶 [IP]、中端脑环叶 [MG]、下垂皮层 [OC] 和上等前额陀螺 [SF]) 和四个其他组织类型(肝脏 [LV]、肺 [LU]、淋巴结 [LN] 和胰腺] 的环状RNA的丰度。RNA-seq库对端测序,并使用六种不同的circRNA预测算法对数据进行分析:find_circ3,CIRI14,Mapsplice15,KNIFE16,DCC17和CIRCexplorer18。根据我们的分析,当使用带有RNase R预处理和4μg总输入RNA的搁浅总RNA库制备试剂盒时,检测到的唯一循环RNA数量最多。此处介绍了优化的协议。正如先前报道的19,20,与其他组织类型相比,大脑中观察到的环RNA的富集性最高。

Protocol

这项研究是按照所有机构、国家和国际人类福利准则进行的。脑组织从位于亚利桑那州太阳城的横幅太阳健康研究所脑和身体捐献项目获得。大脑和身体捐赠计划的运作由西方机构审查委员会(WIRB协议#20120821批准)。所有主体或其法律代表在知情同意书上签了字。商业(非脑)生物标本是从蛋白酶中购买的。 1. RNase R 治疗 注:在以下步骤中,…

Representative Results

使用市售的通用控制RNA(UC)和使用两个库制备试剂盒生成的数据,这两个试剂盒在其协议中都包括核糖核酸消耗步骤。使用分析工作流(数据分析工作流,第 4 节),总体而言,TruSeq 数据集中检测到的环RNA 数量高于 Kapa 数据集(图 1)。尽管两个试剂盒的数据集中的核糖体RNA (rRNA) 百分比低于 5%,输入量较低(1,2 微克),但 Kapa 数据集的 rRNA 含量较高,为 4、5 和 10 ug…

Discussion

在这项研究中,测试了两个市售的库制备试剂盒、预处理选项和输入RNA量,以优化circRNA扩充协议,用于构建circRNA测序库。根据本研究的评估,在创建 circRNA 测序库方面,一些关键方面和关键步骤是显而易见的。我们的评估证实了RNase R预处理的效用,这反映在检测到的环RNA数量的增加上。总体而言,在使用具有RNase R预处理和4μg输入RNA的Illumina TruSeq库试剂盒时,环RNA的倍增性更高。这些结果与先?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢亚利桑那州太阳城的旗帜太阳健康研究所脑和身体捐赠计划(BBDP)提供人脑组织。BBDP得到了国家神经疾病和中风研究所(U24 NS072026帕金森病及相关疾病国家脑和组织资源)、国家老龄问题研究所(P30AG19610亚利桑那州阿尔茨海默病核心中心)、亚利桑那州卫生服务部(合同211002, 亚利桑那阿尔茨海默氏症研究中心),亚利桑那生物医学研究委员会(合同4001,0011,05-901和1001到亚利桑那州帕金森病联合会)和迈克尔J。福克斯帕金森研究基金会27日。这项研究也得到了国土安全部和亚利桑那州(ADHS补助金+ADHS14-052688)的支持。我们还感谢安德里亚·施密特(班纳研究)和辛西娅·莱丘加(TGen)提供的行政支持。

Materials

1000 µL pipette tips Rainin GP-L1000F
20 µL pipette tips Rainin SR L 10F
200 µL pipette tips Rainin SR L 200F
2200 TapeStation Accessories (foil covers) Agilent Technologies 5067-5154
2200 TapeStation Accessories (tips) Agilent Technologies 5067-5153
Adhesive Film for Microplates VWR 60941-064
AMPure XP Beads 450 mL Beckman Coulter A63882 PCR purification
Eppendorf twin.tec 96-Well PCR Plates VWR 951020401
High Sensitivity D1000 reagents Agilent Technologies 5067-5585
High Sensitivity D1000 ScreenTape Agilent Technologies 5067-5584
HiSeq 2500 Sequencing System Illumina SY-401-2501
HiSeq 3000/4000 PE Cluster Kit Illumina PE-410-1001
HiSeq 3000/4000 SBS Kit (150 cycles) Illumina FC-410-1002
HiSeq 4000 Sequencing System Illumina SY-401-4001
HiSeq PE PE Rapid Cluster Kit v2 Illumina PE-402-4002
HiSeq Rapid SBS Kit v2 (50 cycle) Illumina FC-402-4022
Kapa Total RNA Kit Roche KK8400
Molecular biology grade ethanol Fisher Scientific BP28184
Qubit Assay Tubes Supply Center by Thermo Fischer Q32856
Qubit dsDNA High Sense Assay Kit Supply Center by Thermo Fischer Q32854
RNA cleanup and concentrator – 5 Zymo RCC-100 Contains purification columns, collection tubes
RNAClean XP beads Beckman Coulter Genomics RNA Cleanup beads
Rnase R Lucigen RNR07250
SuperScript II Reverse Transcriptase 10,000 units ThermoFisher (LifeTech) 18064014
TapeStation 2200 Agilent Technologies Nucleic Acid analyzer
TElowE VWR 10128-588
TruSeq Stranded Total RNA Library Prep Kit Illumina 20020596 Kit used in section 3
Two-Compartment Divided Tray VWR 3054-1004
UltraPure Water Supply Center by Thermo Fischer 10977-015
Universal control RNA Agilent 740000

References

  1. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One. 7 (2), e30733 (2012).
  2. Jeck, W. R., et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19 (2), 141-157 (2013).
  3. Memczak, S., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495 (7441), 333-338 (2013).
  4. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America. 73 (11), 3852-3856 (1976).
  5. Nigro, J. M., et al. Scrambled exons. Cell. 64 (3), 607-613 (1991).
  6. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genetics. 9 (9), e1003777 (2013).
  7. Du, W. W., et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. European Heart Journal. 38 (18), 1402-1412 (2016).
  8. Capel, B., et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73 (5), 1019-1030 (1993).
  9. Hansen, T. B., et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. The EMBO Journal. 30 (21), 4414-4422 (2011).
  10. Hansen, T. B., et al. Natural RNA circles function as efficient microRNA sponges. Nature. 495 (7441), 384-388 (2013).
  11. Li, Z., et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology. 22 (3), 256-264 (2015).
  12. Tan, W. L., et al. A landscape of circular RNA expression in the human heart. Cardiovascular Research. 113 (3), 298-309 (2016).
  13. Zhong, Z., Lv, M., Chen, J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Scientific Reports. 6, 30919 (2016).
  14. Gao, Y., Wang, J., Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology. 16, 4-014-0571-0573 (2015).
  15. Wang, K., et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research. 38 (18), e178 (2010).
  16. Szabo, L., et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biology. 16, 126-015-0690-0695 (2015).
  17. Cheng, J., Metge, F., Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 32 (7), 1094-1096 (2016).
  18. Zhang, X. O., et al. Complementary sequence-mediated exon circularization. Cell. 159 (1), 134-147 (2014).
  19. Rybak-Wolf, A., et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell. 58 (5), 870-885 (2015).
  20. Ji, P., et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Reports. 26 (12), 3444-3460 (2019).
  21. Hansen, T. B., Venø, M. T., Damgaard, C. K., Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Research. 44 (6), e58 (2016).
  22. Zeng, X., Lin, W., Guo, M., Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol. 13 (6), e1005420 (2017).
  23. Sekar, S., et al. ACValidator: a novel assembly-based approach for in silico validation of circular RNAs. bioRxiv. , (2019).
  24. Westholm, J. O., et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports. 9 (5), 1966-1980 (2014).
  25. Szabo, L., Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nature Reviews Genetics. 17 (11), 679-692 (2016).
  26. Zheng, Y., Ji, P., Chen, S., Hou, L., Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Medicine. 11 (1), 2 (2019).
  27. Beach, T. G., et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 35 (4), 354-389 (2015).
check_url/kr/59981?article_type=t

Play Video

Cite This Article
Sekar, S., Geiger, P., Cuyugan, L., Boyle, A., Serrano, G., Beach, T. G., Liang, W. S. Identification of Circular RNAs using RNA Sequencing. J. Vis. Exp. (153), e59981, doi:10.3791/59981 (2019).

View Video