Summary

在氧化应激期间细胞粘附和纤维蛋白扩散动力学

Published: October 13, 2019
doi:

Summary

该方法可用于量化细胞粘附的早期动力学,并将锚固依赖细胞扩散到纤维质。此外,此测定可用于研究改变的氧化还原平衡对细胞扩散和/或细胞粘附相关细胞内信号通路的影响。

Abstract

细胞粘附和扩散到细胞外基质(ECM)是有机体发育和成人组织平衡过程中必不可少的细胞过程。有趣的是,氧化应激可以改变这些过程,从而促进转移性癌症等疾病的病理生理学。因此,了解在氧化还原状态扰动期间细胞如何附着和在ECM上传播的机制,可以深入了解正常和疾病状态。下面描述是一个循序式方案,它利用基于免疫荧光的测定来具体量化细胞粘附和在体外纤维素(FN)上传播不朽的成纤维细胞。简单地说,锚固依赖细胞被悬浮,并暴露于ATM激酶抑制剂Ku55933诱导氧化应激。然后,在 FN 涂层表面上镀层,并允许在预定的时间段内附着。仍然附着的细胞是固定的,并标有荧光基抗体标记的附着力(例如,白辛)和扩散(例如,F-actin)。数据采集和分析使用常用的实验室设备进行,包括荧光显微镜和免费提供的斐济软件。此过程用途广泛,可针对各种细胞系、ECM 蛋白或抑制剂进行修改,以检查广泛的生物学问题。

Introduction

细胞基质粘附(即焦点粘附)是大而动态的多分子蛋白复合物,可调节细胞粘附和扩散。这些过程对于组织发育、维护和生理功能至关重要。焦点粘附由膜结合受体(如整数)以及将细胞骨骼功能素与细胞外基质(ECM)1联系起来的脚手架蛋白组成。这些复合物能够通过激活各种信号转导途径来响应细胞外环境中的物理化学线索。因此,焦点粘附作为信号中心,将细胞外机械线索传播到许多细胞过程,包括定向迁移、细胞周期调节、分化和存活1、2。一组调节焦点粘附并与之相互作用的信号分子包括小GTPases的Rho家族的成员。Rho GTPass是关键的蛋白质,通过它们特定的时空活化3调节细胞迁移和粘附动力学。毫不奇怪,Rho蛋白功能调节障碍与一些人类病理有关,如转移、血管生成等。特别令人感兴趣的是,细胞氧化还原状态在细胞迁移和粘附的调制中起着主要作用。氧化还原平衡的改变,如活性氧物种(ROS)的增加,已被证明可以调节许多细胞类型和人类疾病中的Rho蛋白活性和附着力4、5、6 78.例如,患有神经紊乱(A-T),这是由DNA损伤修复丝氨酸/三甲氨酸激酶A-T突变(ATM)的突变引起的,转移性癌症的风险增加9, 10.这些患者和细胞系的ATM激酶活性丧失,无论是通过基因突变还是化学抑制,导致由于磷酸苯甲酸酯通路7、11的功能障碍而产生高水平的氧化应激。 12.此外,实验室最近的研究通过改变细胞骨骼动力学(即粘附和扩散)在A-T中对ROS的病理生理学作用,直接导致在体外激活Rho家族GTPases。最终,由Rho家族活化引起的细胞骨骼动力学的这些改变可能导致A-T患者5、13中注意到的转移性癌症风险增加。因此,了解氧化应激期间细胞-基质相互作用之间的相互作用,可以深入了解粘附和扩散的调节。这些研究还可以为进一步调查 Rho 家族 GTPass 在这些信号过程中可能扮演的角色设置舞台。

本文所述是研究ATM激酶活性抑制引起的氧化应激期间粘附组装和扩散的早期细胞动力学的一种方案。此测定基于锚固依赖细胞粘附于 ECM 蛋白纤维蛋白 (FN) 的良好特征机制。当悬浮细胞被镀在FN上时,几个Rho GTPass协调对细胞骨骼重塑的控制3,14。当细胞从外观的圆形和圆形向扁平和膨胀移动时,形态变化被观察。伴随这些观察的是与 ECM 一起开发许多矩阵粘附。这些变化归因于当细胞粘附并扩散15、16时,在1小时内用Rac1对RhoA进行双相激活。

已采用各种方法检查粘附形态和动力学以及细胞扩散。然而,这些方法依赖于复杂的长期实时成像全内反射荧光(TIRF)或共聚焦显微镜系统。因此,用户必须有权访问专用设备和软件。此外,这些生物成像系统所需的设置时间使得捕获早期粘附事件具有挑战性,尤其是在同时测试多种抑制剂或治疗条件时。

本文详细的方法提供了一种简单、经济、定量的方法来评估控制粘附组件和体外扩散的参数。该协议使用常用的实验室设备执行,如荧光显微镜和CCD相机。这种测定涉及在ATM激酶活性化学抑制引起一段时间的氧化应激后,将锚固依赖细胞应用于FN涂层表面,这在之前已经证明了这一点。电镀后,允许电池在指定的时间长度上附加和粘附。未附着的细胞被冲走,而附着的细胞被固定,并标有荧光基抗体的附着力(例如,帕西林)和扩散(例如,F-actin)2,5 。然后,这些蛋白质使用荧光显微镜进行可视化和记录。随后的数据分析使用免费提供的斐济软件进行。此外,该方法可以适应,以检查粘附动力学在广泛的条件下,包括不同的ECM蛋白,处理各种氧化剂/细胞培养条件或各种锚固依赖细胞系,以解决广泛的范围生物问题。

Protocol

1. 准备工作 注: 下面描述的协议已针对 REF52 细胞和 ATM+/*或 ATM-/-人成纤维细胞的使用进行了优化。其他单元格类型可能需要进一步优化,如下面的说明和故障排除部分所述。 为REF52细胞制作500 mL的完整细胞培养基。在含有Dulbeco的改性鹰培养基(DMEM)的500mL中,可添加10S、2 mM L-谷氨酰胺和100单位/mL青霉素-链霉素。 在12mL无菌1x磷酸盐缓冲盐水…

Representative Results

实验设置的一般架构 图1显示了从REF52细胞血清饥饿开始,以获得荧光图像的计算分析结束的细胞粘附和扩散协议的一般架构。时间线中说明了协议中的关键步骤。值得注意的是,协议的第 2 步描述了 FN 涂层盖玻片的制备,该表应与步骤 3 同时进行:血清饥饿的 REF52 细胞在将其置于悬浮状态之前(图 1A)。在荧光显微镜样品固定之?…

Discussion

此处描述的协议是一种通用且经济的方法,可快速筛选多个与锚固相关的细胞类型,以便在细胞扩散期间进行动态细胞骨架重塑。特别是,当细胞粘附在FN上时,这种方法定量地检查氧化应激期间的应力纤维和焦点粘附形成(图1A)。此外,这些细胞表型可能建议一个监管作用的Rho家族的小GTPases的成员,因为他们有记录的作用,在细胞附件和传播15,16,22。</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢斯科特·赫顿博士和梅根·布莱克利奇博士对手稿的批判性评论。这项工作由高点大学的研究和赞助项目(MCS)和北卡罗来纳州立大学生物技术项目资助。

Materials

0.05% Trypsin-EDTA (1x) Gibco by Life Technologies 25300-054 cell dissociation
10 cm2 dishes Cell Treat 229620 sterile, tissue culture treated
15 mL conical tubes Fisher Scientific 05-539-5 sterile
1X Phosphate Buffered Saline Corning Cellgro 21-031-CV PBS, sterile, free of Mg2+ and Ca2+
24-well cell culture treated plates Fisher Scientific 07-200-740 sterile, tissue culture treated
4°C refrigerator Fisher Scientific
Mouse IgG anti-paxillin primary antibody (clone 165) BD Transduction Laboratories 610620 marker of focal adhesions
Aspirator Argos EV310
Biosafety cabinet Nuair NU-477-400 Class II, Type A, series 5
Delipidated Bovine Serum Albumin (Fatty Acid Free) Powder Fisher Scientific BP9704-100 dlBSA
Dimethyl Sulfoxide Fisher Scientific BP231-100 organic solvent to dissolve Ku55933
Dulbecco's Modified Eagle Media, High Glucose Fisher Scientific 11965092 REF52 base cell culture medium
Fetal bovine serum Fisher Scientific 16000044 certified, cell culture medium supplement
Fiji National Institutes of Health http://fiji.sc/ image analysis program
Filter syringe Fisher Scientific 6900-2502 0.2 µM, sterile
Glass coverslips (12-Cir-1.5) Fisher Scientific 12-545-81 autoclave in foil to sterilize
Goat anti-mouse IgG secondary antibody Alexa Fluor 488 Invitrogen A11001 fluorescent secondary antibody, light sensitive
Goat Serum Gibco by Life Technologies 16210-064 component of blocking solution for immunofluorescence
Hemocytometer Fisher Scientific 22-600-107 for cell counting
Human Plasma Fibronectin Gibco by Life Technologies 33016-015 FN
IX73 Fluorescence Inverted Microscope Olympus microscope to visualize fluorescence, cell morphology, counting and dissociation
Ku55933 Sigma-Aldrich SML1109-25MG ATM kinase inhibitor, inducer of reactive oxygen species
L-glutamine Fisher Scientific 25-030-081 cell culture medium supplement
Monochrome CMOS 16 bit camera Optimos
Paraformaldehyde Sigma-Aldrich P6148-500G PFA, fixative for immunofluorescence
Penicillin-streptomycin Fisher Scientific 15-140-122 P/S, antibiotic solution for culture medium
Alexa Fluor 594 phalloidin (F-actin probe) Invitrogen A12381 marker of F-actin, light sensitive
ProLong Gold Anti-fade reagent with DAPI Invitrogen P36941 cover slip mounting media including nuclear dye DAPI, light sensitive
REF52 cells Graham, D.M. et. al. Journal of Cell Biology 2018
Stir plate with heat control Corning Incorporated PC-420D
Syringe BD Biosciences 309653 60 mL syringe
Tissue culture incubator Nuair
Triton X-100 Fisher Scientific BP151-500 detergent used to permeabilize cell membranes
Trypan Blue Solution Fisher Scientific 15-250-061 for cell counting
Trypsin Neutralizing Solution (1x) Gibco by Life Technologies R-002-100 TNS, neutralizes trypsin instead of fetal bovine serum
tube rotator Fisher Scientific 11-676-341
water bath Fisher Scientific FSGPD02

References

  1. Geiger, B., Bershadsky, A., Pankov, R., Yamada, K. M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews: Molecular Cell Biology. 2 (11), 793-805 (2001).
  2. Geiger, B., Yamada, K. M. Molecular architecture and function of matrix adhesions. Cold Spring Harbor Perspectives in Biology. 3 (5), (2011).
  3. Lawson, C. D., Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 5, e27958 (2014).
  4. Heo, J., Campbell, S. L. Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases. Journal of Biological Chemistry. 280 (35), 31003-31010 (2005).
  5. Tolbert, C. E., Beck, M. V., Kilmer, C. E., Srougi, M. C. Loss of ATM positively regulates Rac1 activity and cellular migration through oxidative stress. Biochemical and Biophysical Research Communications. 508 (4), 1155-1161 (2019).
  6. Hobbs, G. A., et al. Redox regulation of Rac1 by thiol oxidation. Free Radical Biology and Medicine. 79, 237-250 (2015).
  7. Zhang, Y., et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Science Signaling. 11 (538), (2018).
  8. Hobbs, G. A., Zhou, B., Cox, A. D., Campbell, S. L. Rho GTPases, oxidation, and cell redox control. Small GTPases. 5, e28579 (2014).
  9. Shiloh, Y., Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews: Molecular Cell Biology. 14 (4), 197-210 (2013).
  10. Lang, L., et al. ATM-Mediated Phosphorylation of Cortactin Involved in Actin Polymerization Promotes Breast Cancer Cells Migration and Invasion. Cellular Physiology and Biochemistry. 51 (6), 2972-2988 (2018).
  11. Peter, Y., et al. Elevated Cu/Zn-SOD exacerbates radiation sensitivity and hematopoietic abnormalities of Atm-deficient mice. European Molecular Biology Organization Journal. 20 (7), 1538-1546 (2001).
  12. Takao, N., Li, Y., Yamamoto, K. Protective roles for ATM in cellular response to oxidative stress. Federation of European Biochemical Societies Letters. 472 (1), 133-136 (2000).
  13. Jansen, S., Gosens, R., Wieland, T., Schmidt, M. Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacology & Therapeutics. 183, 1-21 (2018).
  14. Berrier, A. L., Martinez, R., Bokoch, G. M., LaFlamme, S. E. The integrin beta tail is required and sufficient to regulate adhesion signaling to Rac1. Journal of Cell Science. 115 (Pt 22), 4285-4291 (2002).
  15. Arthur, W. T., Petch, L. A., Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology. 10 (12), 719-722 (2000).
  16. Arthur, W. T., Burridge, K. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the Cell. 12 (9), 2711-2720 (2001).
  17. Chandra, S., Kalaivani, R., Kumar, M., Srinivasan, N., Sarkar, D. P. Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes. Molecular Biology of the Cell. 28 (26), 3801-3814 (2017).
  18. Fitzpatrick, M. . Measuring Cell Fluorescence Using ImageJ. , (2014).
  19. Berginski, M. E., Vitriol, E. A., Hahn, K. M., Gomez, S. M. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One. 6 (7), e22025 (2011).
  20. Horzum, U., Ozdil, B., Pesen-Okvur, D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56-59 (2014).
  21. Elosegui-Artola, A., et al. Image analysis for the quantitative comparison of stress fibers and focal adhesions. PLoS One. 9 (9), e107393 (2014).
  22. Meller, J., Vidali, L., Schwartz, M. A. Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. Journal of Cell Science. 121 (Pt 12), 1981-1989 (2008).
  23. Donaldson, J. G. Immunofluorescence Staining. Current Protocols in Cell Biology. 69 (43), 1-7 (2015).
  24. Burry, R. W. Controls for immunocytochemistry: an update. Journal of Histochemistry and Cytochemistry. 59 (1), 6-12 (2011).
  25. Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 466 (7303), 263-266 (2010).
  26. Kumar, A., et al. Correction: Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. Journal of Cell Biology. 214 (2), 231 (2016).
  27. Kumar, A., et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. Journal of Cell Biology. 213 (3), 371-383 (2016).
  28. Friedrichs, J., Helenius, J., Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nature Protocols. 5 (7), 1353-1361 (2010).
  29. Brown, M. A., et al. The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces. Biomaterials. 28 (27), 3928-3935 (2007).
check_url/kr/59989?article_type=t

Play Video

Cite This Article
Tolbert, C. E., Palmquist, L., Dixon, H. L., Srougi, M. C. Examining the Dynamics of Cellular Adhesion and Spreading of Epithelial Cells on Fibronectin During Oxidative Stress. J. Vis. Exp. (152), e59989, doi:10.3791/59989 (2019).

View Video