Summary

研究左心室反向改造由主动脉脱体在啮齿动物

Published: July 14, 2021
doi:

Summary

在这里,我们描述了在成熟的主动脉收缩模型中手术主动脉脱体的分步协议。这个过程不仅允许研究左心室反向改造和肥大回归背后的机制,而且还可以测试可能加速心肌恢复的新疗法方案。

Abstract

为了更好地了解左心室 (LV) 反向改造 (RR),我们描述了一个啮齿动物模型,其中,在主动脉带引起的 LV 改造后,小鼠在切除主动脉收缩后接受 RR。在本文中,我们描述了一个分步手术,在小鼠中执行微创手术主动脉去除。回声心动图随后用于评估LV改造和RR期间心脏肥大和功能障碍的程度,并确定主动脉脱体的最佳时机。在协议结束时,对心脏功能进行了末期血液动力学评估,并收集了样本进行组学研究。我们表明,去除与手术存活率70-80%有关。此外,在解散两周后,心室后负荷的显著减少会触发心室肥大的回归(+20%)和纤维化(+26%),通过左心室填充和末期舒张压力(E/e’和LVEDP)的正常化评估舒张功能障碍的恢复。主动脉去除是研究啮齿动物LV RR的有用实验模型。因此,心肌恢复的范围在受试者之间是可变的,这模仿了临床环境中发生的RR的多样性,如主动脉瓣置换。我们的结论是,主动脉带状/脱体模型是解开对RR机制的新见解的宝贵工具,即心脏肥大的回归和舒张功能障碍的恢复。

Introduction

小鼠横向或上升主动脉的收缩是压力过载引起的心脏肥大、舒张和收缩功能障碍以及心力衰竭1、2、3、4的广泛应用的实验模型。主动脉收缩最初导致补偿左心室(LV)同心肥大,使壁应力正常化1。然而,在某些情况下,如长时间心脏超负荷,这种肥大不足以减少壁应力,触发舒张和收缩功能障碍(病理肥大)5。同时,细胞外基质 (ECM) 的变化导致胶原蛋白沉积和交叉链接的过程称为纤维化,可以细分为替代纤维化和反应性纤维化。纤维化是,在大多数情况下,不可逆转和妥协心肌恢复后超载救济6,7。然而,最近的心脏磁共振成像研究表明,反应性纤维化能够长期倒退总之,纤维化、肥大和心脏功能障碍是心肌重塑过程的一部分,这个过程会迅速走向心力衰竭(HF)。

了解心肌重塑的特点已成为限制或扭转其进展的主要目标,后者称为反向改造 (RR)。RR 一词包括任何由给定干预长期逆转的心肌改变,如药理疗法(如抗高血压药物)、瓣膜手术(如主动脉狭窄)或心室辅助设备(如慢性 HF)。然而,由于普遍存在的肥大或收缩/舒张功能障碍,RR通常不完整。因此,RR 基本机制和新颖的治疗策略的澄清仍然缺失,这主要是因为大多数患者在 RR 期间无法访问和研究人类心肌组织。

为了克服这一限制,啮齿动物模型在促进我们对高频进展中涉及的信号通路的理解方面发挥了重要作用。具体来说,主动脉收缩小鼠的主动脉去除是研究不利LV改造9和RR10,11背后的分子机制的有用模型,因为它允许在这两个阶段的不同时间点收集心肌样本。此外,它提供了一个优秀的实验设置,以测试潜在的新目标,可以促进/加速RR。例如,在主动脉狭窄的背景下,该模型可能提供有关 RR6、12完整性基础下心肌反应的巨大多样性所涉及的分子机制的信息,以及瓣膜更换的最佳时机,这是当前知识的一个主要缺陷。事实上,这种干预的最佳时机是一个争论的话题,主要是因为它是根据主动脉梯度大小来定义的。一些研究主张,这个时间点可能为时已晚,心肌恢复,因为纤维化和舒张功能障碍往往已经存在12。

据我们所知,这是唯一的动物模型,回顾心肌改造和RR的过程分别发生在主动脉狭窄或高血压等条件下的阀门更换或抗高血压药物的开始。

为了应对上述挑战,我们描述了一种可在小鼠和大鼠身上实施的手术动物模型,解决了这两个物种之间的差异。我们描述了进行这些手术时涉及的主要步骤和细节。最后,我们报告LV在RR之前和整个RR中发生的最重大变化。

Protocol

所有动物实验均符合《实验室动物护理和使用指南》(NIH出版物第85-23号,2011年修订)和葡萄牙动物福利法(DL 129/92,DL 197/96;P 1131/97)。地方当局主管部门批准了这项实验议定书(018833)。七周大的雄性C57B1/J6小鼠被关在适当的笼子里,有规律的12/12 h光暗循环环境,温度为22°C,湿度为60%,可获得水和标准饮食。 1. 手术场的准备 用70%的酒精对手术部位进行消毒,并在…

Representative Results

术后和后期生存带状手术的术外存活率为80%,第一个月的死亡率一般为20%<。如前所述,去除手术的成功在很大程度上取决于以前的手术的侵入性。经过学习曲线后,去除程序期间的死亡率约为 25%。对于这个死亡帐户大多是在手术过程中死亡,包括主动脉或左中庭破裂(在老鼠,生存率在两个外科手术更高)。 主动脉带和心肌重塑主动脉收缩的…

Discussion

本文提出的模型分别模拟了主动脉绑带和解散后LV改造和RR的过程。因此,它代表了一个很好的实验模型,以推进我们对与不利LV改造有关的分子机制的知识,并测试新的治疗策略,能够诱导这些患者的心肌恢复。该协议详细说明了如何创建主动脉带和脱体的啮齿动物模型的步骤,使用微创和高度保守的手术技术,以减少手术创伤。

协议最关键的步骤与主动脉带期间的手术攻?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢葡萄牙科学和技术基金会(FCT)、欧洲联盟、国家科学院(QREN)、欧洲德森沃尔维门托地区基金会(FEDER)和竞争因素方案(竞争)为联合IC(UID/IC/00051/2013)研究单位提供资金。该项目由联邦贸易委员会通过竞争2020 – 国际竞争项目(POCI)支持,项目DOCNET(NORTE-0145-FEDER-0000003),由北葡萄牙区域业务方案(NORTE 2020)根据葡萄牙2020年伙伴关系协定支持, 通过欧洲区域发展基金(ERDF),该项目NETDIAMOND(POCI-01-0145-FEDER-016385),由欧洲结构和投资基金支持,里斯本2020年区域业务计划。丹妮拉·米兰达-西尔瓦和帕特里西亚·罗德里格斯分别由特克诺洛尼亚基金会(FCT)通过奖学金赠款(SFRH/BD/87556/2012和SFRH/BD/96026/2013)提供资金。

Materials

Absorption Spears F.S.T 18105-03 To absorb fluids during the surgery
Blades F.S.T 10011-00 To perform the skin incision
Buprenorphine Buprelieve Analgesia drug
Catutery F.S.T 18010-00 To prevent exsanguination
Catutery tips F.S.T 18010-01 To prevent exsanguination
cotton swab Johnson's To absorb fluids during the surgery
Depilatory cream Veet To delipate the animal
Disposable operating room table cover MEDKINE DYND4030SB To cover the surgical area
Echo probe Siemens Sequoia 15L8W Ultrasound signal aquisition
Echocardiograph Siemens Acuson Sequoia C512 Ultrasound signal aquisition
End-tidal CO2 monitor Kent Scientific CapnoStat To control expiration gas saturation
Forcep/Tweezers F.S.T 11255-20 To dissect the tissues and aorta
Forcep/Tweezers F.S.T 11272-30 To dissect the tissues and aorta
Forcep/Tweezers F.S.T 11151-10 To dissect the tissues and aorta
Forcep/Tweezers F.S.T 11152-10 To dissect the tissues and aorta
Gas system Penlon Sigma Delta To anesthesia and mechanical ventilation
Hemostats F.S.T 13010-12 To hold the suture before tight the aorta
Hemostats F.S.T 13011-12 To hold the suture before tight the aorta
Ligation aids F.S.T 18062-12 To place a suture around the aorta
Magnetic retractor F.S.T 18200-20 To help keep the animal in a proper position
Needle holder F.S.T 12503-15 To suture the animal
Needle 26G B-BRAUN 4665457 To serve as a molde of aortic constriction diameter
Oxygen Air Liquide To anesthesia and mechanical ventilation
Polipropilene suture Vycril W8304/W8597 To suture the animal and to do the constriction
Povidone-iodine solution Betadine® Skin antiseptic
PowerLab Millar instruments ML880 PowerLab 16/30 PV loop Signal Aquisition
Pulse oximeter Kent Scientific MouseStat To control heart rate and blood saturation
PVAN software Millar Instruments To analyse the haemodynamic data
PV loop cathether Millar instruments SPR-1035. 1.4 F PV loop Signal Aquisition
Retractor F.S.T 17000-01 To provide a better overview of the aorta
Scalpet handle F.S.T 10003-12 To perform the skin incision
Scissors F.S.T 15070-08 To cut the suture in debanding surgery
Scissors F.S.T 14084-09 To cut other material during the surgery e.g. suture, papper
Sevoflurane Baxter 533-CA2L9117
Temperature control module Kent Scientific RightTemp To control animal corporal temperature
Ventilator Kent Scientific PhysioSuite To ventilate the animal
Water-bath Thermo Scientific™ TSGP02 To maintain water temperature adequate to heat the P-V loop catethers

References

  1. Arany, Z., et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proceedings of the National Academy of Science U. S. A. 103 (26), 10086-10091 (2006).
  2. Tavakoli, R., Nemska, S., Jamshidi, P., Gassmann, M., Frossard, N. Technique of Minimally Invasive Transverse Aortic Constriction in Mice for Induction of Left Ventricular Hypertrophy. Journal of Visualized Experiment. (127), e56231 (2017).
  3. Zaw, A. M., Williams, C. M., Law, H. K., Chow, B. K. Minimally Invasive Transverse Aortic Constriction in Mice. Journal of Visualized Experiment. (121), e55293 (2017).
  4. Rockman, H. A., et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Science. 88 (18), 8277-8281 (1991).
  5. Koide, M., et al. Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circulation. 95 (6), 1601-1610 (1997).
  6. Rodrigues, P. G., Leite-Moreira, A. F., Falcao-Pires, I. Myocardial reverse remodeling: how far can we rewind. American Journal of Physiology-Heart and Circulatory Physiology. 310 (11), 1402-1422 (2016).
  7. Weidemann, F., et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 120 (7), 577-584 (2009).
  8. Bing, R., et al. Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis. JACC Cardiovascular Imaging. 12 (2), 283-296 (2019).
  9. Conceicao, G., Heinonen, I., Lourenco, A. P., Duncker, D. J., Falcao-Pires, I. Animal models of heart failure with preserved ejection fraction. Netherlands Heart Journal. 24 (4), 275-286 (2016).
  10. Weinheimer, C. J., et al. Load-Dependent Changes in Left Ventricular Structure and Function in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure. Circulation Heart Failure. 11 (5), 004351 (2018).
  11. Bjornstad, J. L., et al. A mouse model of reverse cardiac remodelling following banding-debanding of the ascending aorta. Acta Physiologica (Oxford). 205 (1), 92-102 (2012).
  12. Yarbrough, W. M., Mukherjee, R., Ikonomidis, J. S., Zile, M. R., Spinale, F. G. Myocardial remodeling with aortic stenosis and after aortic valve replacement: mechanisms and future prognostic implications. Journal of Thoracic and Cardiovascular Surgery. 143 (3), 656-664 (2012).
  13. deAlmeida, A. C., van Oort, R. J., Wehrens, X. H. Transverse aortic constriction in mice. Journal of Visualized Experiment. (38), 1729 (2010).
  14. Hamdani, N., et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circulation: Heart Failure. 6 (6), 1239-1249 (2013).
  15. Li, L., et al. Assessment of Cardiac Morphological and Functional Changes in Mouse Model of Transverse Aortic Constriction by Echocardiographic Imaging. Journal of Visualized Experiment. (112), e54101 (2016).
  16. Lygate, C. A., et al. Serial high resolution 3D-MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Research in Cardiology. 101 (1), 8-16 (2006).
  17. Platt, M. J., Huber, J. S., Romanova, N., Brunt, K. R., Simpson, J. A. Pathophysiological Mapping of Experimental Heart Failure: Left and Right Ventricular Remodeling in Transverse Aortic Constriction Is Temporally, Kinetically and Structurally Distinct. Frontiers in Physiology. 9, 472 (2018).
  18. Garcia-Menendez, L., Karamanlidis, G., Kolwicz, S., Tian, R. Substrain specific response to cardiac pressure overload in C57BL/6 mice. American Journal of Physiology-Heart and Circulation Physiology. 305 (3), 397-402 (2013).
  19. Melleby, A. O., et al. A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovascular Research. 114 (12), 1680-1690 (2018).
  20. Li, Y. H., et al. Effect of age on peripheral vascular response to transverse aortic banding in mice. The Journal of Gerontology. Series A, Biological Sciences and Medical Sciences. 58 (10), 895-899 (2003).
  21. Ruppert, M., et al. Myocardial reverse remodeling after pressure unloading is associated with maintained cardiac mechanoenergetics in a rat model of left ventricular hypertrophy. American Journal of Physiology-Heart and Circulation Physiology. 311 (3), 592-603 (2016).
  22. Treibel, T. A., et al. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. Journal of the American College of Cardiology. 71 (8), 860-871 (2018).
  23. Dadson, K., et al. Cellular, structural and functional cardiac remodelling following pressure overload and unloading. International Journal of Cardiology. 216, 32-42 (2016).
  24. Krayenbuehl, H. P., et al. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation. 79 (4), 744-755 (1989).
  25. McCann, G. P., Singh, A. Revisiting Reverse Remodeling After Aortic Valve Replacement for Aortic Stenosis. Journal of the American College of Cardiology. 71 (8), 872-874 (2018).
  26. Miranda-Silva, D., et al. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Science Reports. 9 (1), 2956 (2019).
check_url/kr/60036?article_type=t

Play Video

Cite This Article
Goncalves-Rodrigues, P., Miranda-Silva, D., Leite-Moreira, A. F., Falcão-Pires, I. Studying Left Ventricular Reverse Remodeling by Aortic Debanding in Rodents. J. Vis. Exp. (173), e60036, doi:10.3791/60036 (2021).

View Video