Summary

Valutazione emodinamica invasiva per il sistema ventricolare destro e l'ipertensione arteriosa polmonare indotta dall'ipossia nei topi

Published: October 24, 2019
doi:

Summary

Qui, presentiamo un protocollo per eseguire una valutazione emodinamica invasiva del ventricolo destro e dell’arteria polmonare nei topi utilizzando un approccio chirurgico a torace aperto.

Abstract

L’ipertensione arteriosa polmonare (PAH) è un disturbo cardiopolmonare cronico e grave. I topi sono un modello animale popolare utilizzato per imitare questa malattia. Tuttavia, la valutazione della pressione ventricolare destra (RVP) e della pressione dell’arteria polmonare (PAP) rimane tecnicamente impegnativa nei topi. RVP e PAP sono più difficili da misurare rispetto alla pressione ventricolare sinistra a causa delle differenze anatomiche tra il sistema del cuore sinistro e quello destro. In questo articolo, descriviamo un metodo stabile di misurazione emodinamica del cuore destro e la sua convalida utilizzando topi sani e PAH. Questo metodo si basa sulla chirurgia toracica aperta e supporto di ventilazione meccanica. È una procedura complicata rispetto alle procedure del torace chiuso. Mentre un chirurgo ben addestrato è richiesto per questo intervento chirurgico, il vantaggio di questa procedura è che può generare entrambi i parametri RVP e PAP allo stesso tempo, quindi è una procedura preferibile per la valutazione dei modelli Di PAH.

Introduction

L’ipertensione arteriosa polmonare (PAH) è un disturbo cardiopolmonare cronico e grave con elevazione della pressione dell’arteria polmonare (PAP) e pressione ventricolare destra (RVP) causata dalla proliferazione cellulare e dalla fibrosi di piccole arterie polmonari 1. Cateteri dell’arteria polmonare, chiamati anche cateteri Swan-Ganz2, sono comunemente utilizzati nel monitoraggio clinico di RVP e PAP. Inoltre, un sistema di monitoraggio PAP wireless è stato utilizzato clinicamente3,4,5. Per imitare la malattia per lo studio nei topi, viene utilizzato un ambiente ipossico per simulare le manifestazioni cliniche umane della PAH6. Nella valutazione del PAP negli animali, gli animali di grandi dimensioni sono relativamente facili da monitorare attraverso cateteri dell’arteria polmonare utilizzando la stessa tecnica dei soggetti umani, ma piccoli animali come ratti e topi sono difficili da valutare a causa delle loro piccole dimensioni corporee. La misurazione emodinamica del sistema ventricolare destro nei topi è possibile con una dimensione ultrapiccola 1 Catetere Fr7. Un metodo per misurare RVP e PAP nei topi è stato riportato nella letteratura8,9, ma la metodologia manca di una descrizione dettagliata. RVP e PAP sono più difficili da misurare rispetto alla pressione ventricolare sinistra a causa delle differenze anatomiche tra il sistema cardiaco sinistro e destro.

Per ottenere entrambi i parametri PAP e RVP nello stesso mouse, descriviamo un approccio basato su chirurgia a torace aperto per le misurazioni emodinamiche del cuore destro, la sua convalida con topi sani e PAH, e come evitare di generare dati artificiali durante il complicato open-chest chirurgia. Anche se questa tecnica è meglio eseguita da un chirurgo ben addestrato, ha il vantaggio di essere in grado di valutare PAP e RVP nello stesso mouse.

Protocol

Il protocollo sugli animali è stato rivisto e approvato dall’Institutional Animal Care and Use Committee presso il Fuwai Hospital, Chinese Academy of Medical Science, Peking Union Medical College (NO.0000287). Gli animali sperimentali sono stati alloggiati e nutriti secondo le linee guida del benessere degli animali in Cina. NOTA: i topi C57BL di età di otto-12 settimane erano alloggiati in un ambiente con un ciclo di luce scuro/12 h da 12 h. I topi PAH sono stati alloggiati per 4 settimane …

Representative Results

Il catetere del trasduttore di pressione è stato inserito nel ventricolo destro (Figura 3A) attraverso un tunnel espanso da un ago da 25 G ed è stata ottenuta una tipica forma d’onda RVP (Figura 3C). Il catetere è stato continuamente regolato e lentamente avanzato e mantenuto nello stesso asse dell’arteria polmonare mentre passa attraverso la valvola polmonare (Figura 3B). Quando…

Discussion

L’intubazione tracheale è il primo passo importante per interventi chirurgici a torso aperto. Il metodo classico di intubazione tracheale per piccoli animali, come ratti o topi, prevede di fare un’incisione a forma di T sulla trachea e di inserire direttamente tubi tracheali di tipo Y nella trachea. In pratica, troviamo che questo metodo non è facile durante il funzionamento. Il tubo tracheale di tipo Y è troppo grande per i piccoli animali e forma un angolo con la trachea. Così, è difficile fissare il tubo in atto….

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questa ricerca è sostenuta dal Postgraduate Education and Teaching Reform Project del Peking Union Medical College (10023-2016-002-03), dal Fuwai Hospital Youth Fund (2018-F09) e dal Director Fund of Beijing Key Laboratory of Pre-Clinical Research and Valutazione dei materiali impiantati cardiovascolari (2018-PT2-

Materials

2,2,2-Tribromoethanol Sigma-Aldrich T48402-5G For anesthesia
Animal temperature controller Physitemp Instruments, Inc. TCAT-2LV For temperature control
Dissection forceps Fine Science Tools, Inc. 11274-20 For surgery
Gemini Cautery System Gemini GEM 5917 For surgery
Intravenous catheter (22G) BD angiocath 381123 For intubation
LabChart 7.3 ADInstruments For data analysis
Light illumination system Olympus For surgery
Mikro-Tip catheter Millar Instruments, Houston, TX SPR-1000 For pressure measurement
Millar Pressure-Volume Systems Millar Instruments, Houston, TX MVPS-300 For pressure measurement
O2 Controller and Hypoxia chamber Biospherix ProOx 110 For chronic hypoxia
PowerLab Data Acquisition System ADInstruments PowerLab 16/30 For data recording
Scissors Fine Science Tools, Inc. 14084-08 For surgery
Small animal ventilator Harvard Apparatus Mini-Vent 845 For surgery
Stereomicroscope Olympus SZ61 For surgery
Surgery tape 3M For surgery
Terg-a-zyme enzyme Sigma-Aldrich Z273287-1EA For catheter cleaning

References

  1. Humbert, M., et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 130 (24), 2189-2208 (2014).
  2. Chatterjee, K. The Swan-Ganz catheters: past, present, and future: a viewpoint. Circulation. 119 (1), 147-152 (2009).
  3. Adamson, P. B., et al. CHAMPION trial rationale and design: the long-term safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system. Journal of Cardiac Failure. 17 (1), 3-10 (2011).
  4. Abraham, W. T., et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. The Lancet. 377 (9766), 658-666 (2011).
  5. Adamson, P. B., et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circulation: Heart Failure. 7 (6), 935-944 (2014).
  6. Shatat, M. A., et al. Endothelial Kruppel-like Factor 4 modulates pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology. 50 (3), 647-653 (2014).
  7. . SPR-1000 Mouse Pressure Catheter Available from: https://millar.com/products/research/pressure/single-pressure-no-lumen/spr-1000 (2019)
  8. Tabima, D. M., Hacker, T. A., Chesler, N. C. Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. American Journal of Physiology Heart and Circulatory Physiology. 299 (6), 2069-2075 (2010).
  9. Skuli, N., et al. Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood. 114 (2), 469-477 (2009).
  10. . LabChart Available from: https://www.adinstruments.com/products/labchart?creative=290739105773_keyword=labchart_matchtype=e_network=g_device=c_gclid=CjwKCAjwxrzoBRBBEiwAbtX1n42I2S06KmccVncUHkmExU8KKOXXREyzx8bvTrxYMSze-ooE0atcbRoCliwQAvD_BwE (2019)
  11. Marius, M. H., et al. Definitions and diagnosis of pulmonary hypertension. Journal of the American College of Cardiology. 62 (25), 42-50 (2013).
  12. Ciuclan, L., et al. A novel murine model of severe pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine. 184 (10), 1171-1182 (2011).
  13. Brown, R. H., Walters, D. M., Greenberg, R. S., Mitzner, W. A. A method of endotracheal intubation and pulmonary functional assessment for repeated studies in mice. Journal of Applied Physiology. 87 (6), 2362-2365 (1999).
  14. Chen, W. C., et al. Right ventricular systolic pressure measurements in combination with harvest of lung and immune tissue samples in mice. Journal of Visualized Experiments. (71), 50023 (2013).
  15. Ma, Z., Mao, L., Rajagopal, S. Hemodynamic characterization of rodent models of pulmonary arterial hypertension. Journal of Visualized Experiments. (110), 53335 (2016).
  16. Chen, M. Berberine attenuates hypoxia-induced pulmonary arterial hypertension via bone morphogenetic protein and transforming growth factor-β signaling. Journal of Cellular Physiology. , (2019).
  17. Bueno-Beti, C., Hadri, L., Hajjar, R. J., Sassi, Y., Ishikawa, K. The Sugen 5416/Hypoxia mouse model of pulmonary arterial hypertension. Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology. vol 1816. , (2018).
check_url/kr/60090?article_type=t

Play Video

Cite This Article
Luo, F., Wang, X., Luo, X., Li, B., Zhu, D., Sun, H., Tang, Y. Invasive Hemodynamic Assessment for the Right Ventricular System and Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. J. Vis. Exp. (152), e60090, doi:10.3791/60090 (2019).

View Video