Summary

In vivo-vurdering af alveolær makrofag-Efferocytose efter ozoneksponering

Published: October 22, 2019
doi:

Summary

Dette manuskript beskriver en protokol til bestemmelse af, hvorvidt udsættelse for ozon, et kriterium luftforurenende stof, hæmmer alveolær makrofag efferocytose in vivo. Denne protokol udnytter almindeligt anvendte reagenser og teknikker og kan tilpasses til flere modeller af lungeskade til at bestemme virkninger på alveolær makrofag efferocytose.

Abstract

Ozon (O3) er et kriterium luftforurenende stof, der forværrer og øger forekomsten af kroniske lungesygdomme. O3 eksponering er kendt for at inducere lungebetændelse, men der vides ikke meget om, hvordan eksponeringen ændrer processer, der er vigtige for opløsningen af inflammation. Efferocytose er en afviklingsproces, hvor makrofager phagocytize apoptotiske celler. Formålet med denne protokol er at måle alveolære makrofag-efferocytose efter O3-induceret lungeskade og inflammation. Der er beskrevet flere metoder til måling af efferocytose; de fleste kræver dog ex vivo manipulationer. Beskrevet i detaljer her er en protokol til at måle in vivo alveolær makrofag efferocytose 24 h efter O3 eksponering, som undgår ex vivo manipulation af makrofager og fungerer som en simpel teknik, der kan bruges til præcist at repræsentere perturbationer i denne afviklingsproces. Protokollen er en teknisk ikke-intensiv og relativt billig metode, der involverer hele kroppen O3 indånding efterfulgt af orofaryngeal aspiration af apoptotiske celler (dvs., Jurkat T celler) under generel anæstesi. Alveolær makrofag efferocytose måles derefter ved let mikroskopi evaluering af makrofager indsamlet fra bronalveolær (BAL) skylning. Efferocytose måles endelig ved at beregne et efferocytisk indeks. Tilsammen kvantificerer de skitserede metoder efferocytisk aktivitet i lungerne in vivo og tjener også til at analysere de negative sundhedsmæssige virkninger af O3 eller andre inhalerede fornærmelser.

Introduction

Lungerne er konstant udsat for miljømæssige fornærmelser, herunder luft partikler, vira, bakterier, og oxidant gasser, der udløser lungebetændelse1,2,3. Disse fornærmelser kan kompromittere gasudveksling og fremkalde irreversibel vævsskade4,5. Alveolære makrofager, som udgør ca. 95% af de immunceller, der findes i murine og humane lunger ved homøostase, er kritiske regulatorer af lungebetændelse efter miljømæssige fornærmelser1,2, 3,4,5. Alveolære makrofager er afgørende i værts forsvaret ved fagocyterende og eliminere patogener. For nylig har alveolære makrofager vist sig at fremme vævs homøostase og opløsningen af inflammation gennem efferocytose6,7. Efferocytose er en Fagocytisk proces, hvor makrofager opsluge og eliminere apoptotiske celler8,9,10. Efferocytose resulterer også i produktionen af mediatorer (dvs. Il-10, TGF-β, PGE2, og nitrogenoxid), der yderligere forstærker processen, hvilket resulterer i opløsningen af inflammation9,10,11 ,12,16,18. Denne proces er nødvendig for at forebygge sekundær nekrose og fremme vævs homøostase12,13,14. Flere undersøgelser har forbundet nedsat efferocytose med forskellige kroniske lungesygdomme, herunder astma, kronisk obstruktiv lungesygdom, og idiopatisk pulmonal fibrose8,9,15, 16,17.

O3 er et kriterium luftforurenende stof, der forværrer og øger forekomsten af kroniske lungesygdomme19,20,21. O3 inducerer lungebetændelse og-skade og vides at forringe alveolær makrofag fagocytose af bakterielle patogener22,23. Det er imidlertid ukendt, om O3 hæmmer alveolær makrofag efferocytose. Undersøge O3-induceret ændringer i alveolær makrofag efferocytose vil give potentielle indblik i, hvordan eksponering kan føre til kronisk lungesygdom incidens og eksacerbation. Beskrevet nedenfor er en simpel metode til at evaluere alveolær makrofag efferocytose i lungerne hos hunmus efter akut O3 eksponering.

Den skitserede metode besidder flere fordele i forhold til andre efferocytose protokoller almindeligvis anvendes i marken ved at eliminere brugen af dyre fluorescerende farvestoffer, omfattende flow cytometri målinger, og ex vivo manipulation af alveolære makrofager24 ,25. Desuden, denne protokol foranstaltninger alveolær makrofag efferocytose i forbindelse med lunge mikromiljø, som kan påvirke makrofag funktion.

Protocol

Alle metoder er blevet godkendt af Udvalget for institutionel dyrepasning og-anvendelse (IACUC) i East Carolina University. 1. ozon (O3) og filtreret luft eksponering (dag 1) Der må højst være 12 kvindelige C57BL/6J-mus, 8-12 uger gamle, i et stålbur (med 12 separate rum) med trådnetlåg i et O3 -eksponerings kammer. Placer termometret i eksponerings kammeret med buret for nøjagtigt at registrere temperatur og fugtighed. Tænd for den i…

Representative Results

O3 eksponering er kendt for at inducere lungebetændelse og-skade, og efferocytose er nødvendig for at opretholde vævs homøostase. C57BL/6J hunmus blev udsat for filtreret luft (FA) eller 1 ppm O3 for 3 h og nekropsied 24 h efter eksponering for at undersøge lungebetændelse og tilskadekomst. O3-udsatte mus viste en signifikant stigning i makrofager og neutrofiler i luftrummet sammenlignet med FA Control Group (figur 1<str…

Discussion

Efferocytose er en antiinflammatorisk proces, hvor makrofager klar apoptotiske celler og snavs samt producere flere anti-inflammatoriske mediatorer9,10,11,12,16 ,18. Flere modeller af efferocytosis har givet indsigt i, hvordan makrofag er en kritisk celle i opløsningen af inflammation6,<su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne undersøgelse er finansieret af Health Effects Institut Walter A. Rosenblith Award og NIEHS R01ES028829 (til K. M. G). Vi vil gerne takke Dr. Dianne Walters (Institut for fysiologi, ECU) for hendes hjælp til at opnå repræsentative billeder af alveolære makrofager.

Materials

Annexin V-FITC Kit Trevigen 4830-250-K  The TACS Annexin V-FITC Kit allows rapid, specific, and quantitative identification of apoptosis in individual cells when using flow cytometry.
BCL2 Jurkat T Cells  ATCC ATCC CRL-2899 The BCL2 Jurkat cell line was derived by transfecting human Jurkat T cells with the pSFFV-neo mammalian expression vector containing the human BCL-2 ORF insert and a neomycin-resistant gene. Has been for models of measuring efferocytosis. 
Countess II Automated Cell Counter Thermofisher AMQAX1000 It is a benchtop assay platform equipped with state-of-the-art optics, full autofocus, and image analysis software for rapid assessment of cells in suspension. Very easy to use.
Cytospin 4 Cytocentrifuge Thermofisher A78300003 Provides economical thin-layer preparations from any liquid matrix, especially hypocellular fluids such as bronchoalveolar lavage fluid.
Fetal Bovine Serum, qualified, heat inactivated Thermofisher 16140071 Provides Nutrients to cultured cells for them to grow. It is standard for cell culture. 
Kwik-Diff  Reagent 2, Eosin Thermofisher 9990706 Eosin staining that stains cytoplasm.
Kwik-Diff Reagent 1, Fixative Thermofisher 9990705 Fixes cells to be stained by H&E.
Kwik-Diff Reagent 3, Methylene Blue Thermofisher 9990707 Methylene Blue staining that stains the nucleus.
Penicillin-Streptomycin Sigma/Aldrich P0781-100ML Penicillin-Streptomycin is the most commonly used antibiotic solution for culture of mammalian cells. Additionally it is used to maintain sterile conditions during cell culture.
RPMI 1640 Medium, GlutaMAX Supplement  Thermofisher 61870036 RPMI 1640 Medium (Roswell Park Memorial Institute 1640 Medium) was originally developed to culture human leukemic cells in suspension and as a monolayer. RPMI 1640 medium has since been found suitable for a variety of mammalian cells, including HeLa, Jurkat, MCF-7, PC12, PBMC, astrocytes, and carcinomas. Helps grow Jurkat T cells fast and efficiently.
Stratagene UV Stratalinker 1800 UV Crosslinker Cambridge Scientific  16659 The Stratalinker UV crosslinker is designed to induce apoptosis, crosslink DNA or RNA to nylon, nitrocellulose, or nylon-reinforced nitrocellulose membranes.
Teledyne T400 ultraviolet light photometer  Teledyne API T400 The Model T400 UV Absorption analyzer uses a system based on the Beer-Lambert law for measuring low ranges of ozone in ambient air.
Teledyne T703 Ozone calibrator Teledyne API T703 Provides feedback control of the UV lamp intensity, assuring stable ozone output.

References

  1. Puttur, F., Gregory, L. G., Lloyd, C. M. Airway macrophages as the guardians of tissue repair in the lung. Immunology and Cell Biology. , (2019).
  2. Gregoire, M., et al. Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. European Respiratory Journal. 52 (2), (2018).
  3. Fan, E. K. Y., Fan, J. Regulation of alveolar macrophage death in acute lung inflammation. Respiratory Research. 19 (1), 50 (2018).
  4. Michlewska, S., McColl, A., Rossi, A. G., Megson, I. L., Dransfield, I. Clearance of dying cells and autoimmunity. Autoimmunity. 40 (4), 267-273 (2007).
  5. Bhattacharya, J., Westphalen, K. Macrophage-epithelial interactions in pulmonary alveoli. Seminars in Immunopathology. 38 (4), 461-469 (2016).
  6. Donnelly, L. E., Barnes, P. J. Defective phagocytosis in airways disease. Chest. 141 (4), 1055-1062 (2012).
  7. Morimoto, K., Janssen, W. J., Terada, M. Defective efferocytosis by alveolar macrophages in IPF patients. Respiratory Medicine. 106 (12), 1800-1803 (2012).
  8. Vandivier, R. W., et al. Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences. American Journal of Physiology Lung Cellular and Molecular Physiology. 297 (4), L677-L686 (2009).
  9. Grabiec, A. M., et al. Diminished airway macrophage expression of the Axl receptor tyrosine kinase is associated with defective efferocytosis in asthma. The Journal of Allergy and Clinical Immunology. 140 (4), 1144-1146 (2017).
  10. Chen, W., Frank, M. E., Jin, W., Wahl, S. M. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity. 14 (6), 715-725 (2001).
  11. Gao, Y., Herndon, J. M., Zhang, H., Griffith, T. S., Ferguson, T. A. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. Journal of Experimental Medicine. 188 (5), 887-896 (1998).
  12. O’Brien, B. A., Fieldus, W. E., Field, C. J., Finegood, D. T. Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death and Differentiation. 9 (4), 457-464 (2002).
  13. Shen, Z. X., et al. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis. Journal of Biological Chemistry. 292 (3), 925-935 (2017).
  14. Allard, B., Panariti, A., Martin, J. G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology. 9, 1777 (2018).
  15. Hamon, R., et al. Bushfire smoke is pro-inflammatory and suppresses macrophage phagocytic function. Science Reports. 8 (1), 13424 (2018).
  16. Angsana, J., Chen, J., Liu, L., Haller, C. A., Chaikof, E. L. Efferocytosis as a regulator of macrophage chemokine receptor expression and polarization. European Journal of Immunology. 46 (7), 1592-1599 (2016).
  17. Karaji, N., Sattentau, Q. J. Efferocytosis of Pathogen-Infected Cells. Frontiers in Immunology. 8, 1863 (2017).
  18. Brouckaert, G., et al. Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production. Molecular Biology of the Cell. 15 (3), 1089-1100 (2004).
  19. Gonzalez-Guevara, E., et al. Exposure to ozone induces a systemic inflammatory response: possible source of the neurological alterations induced by this gas. Inhalation Toxicology. 26 (8), 485-491 (2014).
  20. Robertson, S., et al. CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. Toxicological Sciences. 134 (2), 304-311 (2013).
  21. Kilburg-Basnyat, B., et al. Specialized Pro-Resolving Lipid Mediators Regulate Ozone-Induced Pulmonary and Systemic Inflammation. Toxicological Sciences. 163 (2), 466-477 (2018).
  22. Jakab, G. J., Spannhake, E. W., Canning, B. J., Kleeberger, S. R., Gilmour, M. I. The effects of ozone on immune function. Environ Health Perspect. 103 Suppl 2, 77-89 (1995).
  23. Gilmour, M. I., Hmieleski, R. R., Stafford, E. A., Jakab, G. J. Suppression and recovery of the alveolar macrophage phagocytic system during continuous exposure to 0.5 ppm ozone. Experimental Lung Research. 17 (3), 547-558 (1991).
  24. Nayak, D. K., Mendez, O., Bowen, S., Mohanakumar, T. Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages. Journal of Visualized Experiments. 10 (134), (2018).
  25. Tao, H., et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. Journal of Lipid Research. 56 (8), 1449-1460 (2015).
  26. Coe, L. M., et al. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. Journal of Biological Chemistry. 289 (14), 9795-9810 (2014).
  27. Yong, W. K., Abd Malek, S. N. Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evidence-Based Complementary and Alternative Medicine. , 921306 (2015).
  28. Van de Laar, L., et al. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity. 44 (4), 755-768 (2016).
  29. Lavin, Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 159 (6), 1312-1326 (2014).
  30. Beattie, L., et al. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. Journal of Hepatology. 65 (4), 758-768 (2016).
  31. Svedberg, F. R., et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nature Immunology. , (2019).
  32. Crowther, J. E., et al. Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. Journal of Immunology. 172 (11), 6866-6874 (2004).
  33. Silveyra, P., Floros, J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Frontiers in Bioscience. 17, 407-429 (2012).
  34. Schagat, T. L., Wofford, J. A., Wright, J. R. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. Journal of Immunology. 166 (4), 2727-2733 (2001).
  35. Gomez Perdiguero, E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518 (7540), 547-551 (2015).
  36. Nebbioso, A., et al. Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses. Scientific Reports. 7 (1), 11725 (2017).
  37. Novak, Z., et al. Efficacy of different UV-emitting light sources in the induction of T-cell apoptosis. Photochemistry and Photobiology. 79 (5), 434-439 (2004).
  38. Park, Y. J., et al. PAI-1 inhibits neutrophil efferocytosis. Proceedings of the National Academy of Sciences of the United States of America. 105 (33), 11784-11789 (2008).
  39. Kleeberger, S. R., Reddy, S., Zhang, L. Y., Jedlicka, A. E. Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4. American Journal of Respiratory Cell and Molecular Biology. 22 (5), 620-627 (2000).
  40. Wesselkamper, S. C., Chen, L. C., Kleeberger, S. R., Gordon, T. Genetic variability in the development of pulmonary tolerance to inhaled pollutants in inbred mice. American Journal of Physiology-Lung Cellular and Molecular Physiology. 281 (5), L1200-L1209 (2001).

Play Video

Cite This Article
Hodge, M. X., Reece, S. W., Madenspacher, J. H., Gowdy, K. M. In Vivo Assessment of Alveolar Macrophage Efferocytosis Following Ozone Exposure. J. Vis. Exp. (152), e60109, doi:10.3791/60109 (2019).

View Video