Summary

小鼠肝脏中细胞类型特异性基因表达分析

Published: September 17, 2019
doi:

Summary

翻译核糖体亲和性纯化(TRAP)可实现细胞类型特异性翻译mRNA的快速和高效分离。在这里,我们演示了一种将水动力尾静脉注射与肝脏再填充小鼠模型和TRAP相结合的方法,以检查重新填充肝细胞的表达特征。

Abstract

受伤后肝脏重新填充是哺乳动物的一个关键特征,它可以防止在接触环境毒素后立即导致器官衰竭和死亡。更深入地了解重放期间发生的基因表达变化,有助于确定治疗目标,促进损伤环境中肝功能的恢复。然而,由于缺乏细胞标记、细胞数量有限以及这些细胞的脆弱性,特别分离重新造血肝细胞的方法受到抑制。结合Fah-/-小鼠模型,在肝损伤设置中重述再填充,使核糖体亲和纯化(TRAP)技术得以转化,从而允许重新填充的基因表达分析肝 细胞。使用TRAP,细胞类型特异性翻译mRNA被快速有效地分离。我们开发了一种方法,利用TRAP与基于亲和力的分离,从肝细胞翻译mRNA,选择性地表达绿色荧光蛋白(GFP)标记核糖体蛋白(RP),GFP:RPL10A。TRAP 绕用荧光激活细胞分类所需的长时间,可改变基因表达轮廓。此外,由于只有重新填充的肝细胞表达GFP:RPL10A融合蛋白,分离的mRNA没有来自周围受伤的肝细胞和肝脏中其他细胞类型的污染。亲和力纯化的mRNA是高质量的,允许下游PCR或高通量测序基于基因表达的分析。

Introduction

肝脏作为脊椎动物的主要代谢器官,负责葡萄糖平衡、血清蛋白合成、胆汁酸分泌、异种生物代谢和排毒。肝脏具有非凡的能力,在接触毒素时再生受伤的帕伦奇马,以防止立即肝衰竭1。然而,再生失败可能发生在对乙酰氨基酚或酒精过量消费的设置,这可能导致急性肝衰竭2。此外,病毒性肝炎感染、脂肪肝、脂肪性肝炎引起的慢性肝损伤可引起肝纤维化、肝硬化、肝细胞癌3。治疗终末期肝病的唯一治疗方法是移植,但受器官短缺的限制,无法对所有患者进行有效治疗。因此,更好地了解毒性肝损伤后的恢复过程对于开发治疗以刺激足以挽救患病器官功能的再生至关重要。

肝再生研究应用最广的模型系统是啮齿动物的局部肝切除术,其中大部分肝脏被切除以刺激肝细胞快速扩张5。然而,部分肝切除术不重述肝细胞扩张后,毒性肝损伤,由于缺乏免疫细胞渗透和肝细胞坏死经常观察到在急性肝损伤设置在人类6。一个更合适的系统来模拟这种形式的器官更新是Fah-/-小鼠,它缺乏功能性紫甲酸氢酶(FAH)所需的适当的酪氨酸代谢,并开发严重的肝脏损伤,导致死亡7。通过饮用水中的药物尼他酮治疗,这些小鼠可以无限期地保持健康状态。或者,FAH表达可以通过转基因递送到肝细胞的子集来恢复,在消除尼西酮8时,肝细胞将膨胀以重新填充肝脏。

为了分析重新填充肝细胞的基因表达变化,需要一种工具,专门分离Fah-/-小鼠中复制的肝细胞,而不受邻近受伤的肝细胞和其他细胞类型的污染。不幸的是,肝细胞的荧光辅助细胞分拣(FACS)很困难,因为(1)肝细胞再生的脆弱性导致肝灌注后恢复不良,(2)复制肝细胞的大小变化很大,使得隔离纯种群由FACS困难,和(3)从肝脏灌注到RNA分离的手术时间大于2小时,因此基因表达谱可能在采集样品之前发生重大人工变化。

或者,表位标记核糖体的表达,专门在重新填充肝细胞允许快速分离积极翻译mRNA结合核糖体结合在器官收获后立即亲和纯化,与散装肝脏组织莱沙。在这里,我们描述了一个协议,以执行翻译核糖体亲和纯化(TRAP)10,然后是高通量RNA测序(TRAP-seq),在Fah-/- 中特别分离和剖分mRNA,以重新填充肝细胞- /-鼠标9.绿色荧光蛋白标记核糖体蛋白(GFP:RPL10A)与FAH的共聚体蛋白(GFP:RPL10A)与FAH的共聚体结合,允许通过含有GFP:RPL10A的聚体结合的翻译mRNA进行亲和纯化。这种方法避免了任何细胞分离步骤,如肝脏灌注,以分离脆弱的再生肝细胞。相反,它利用整个器官组织和抗体的解毒,快速从靶细胞中快速提取RNA。最后,通过TRAP-seq分离大量、高质量的mRNA,使测序分析等下游应用能够分析基因表达在再填充过程中的动态变化。

Protocol

所有涉及使用小鼠的方法都符合宾夕法尼亚大学宾夕法尼亚大学宾夕法尼亚大学动物福利办公室IACUC提供的指南。 1. 试剂制备 赛克洛赫西米德 要使500μL为0.1克/mL环氧西米,在500μL甲醇中悬浮50毫克环己酰胺。警告:环己酰胺对环境毒性极强,可引起先天性畸形。所有含有环己酰胺的废物和缓冲液应收集,以便妥善处置。注…

Representative Results

为了在重新填充Fah-/-小鼠的肝细胞中分析基因表达,Gfp:Rpl10a融合和法赫转基因在含有质粒的转位子8(TRAP载体)中共同传递到肝脏,流体动力学注射 (图 1A)去除尼西酮诱导毒性肝损伤,为肝细胞产生选择压力,使其能稳稳地表达FAH,以重新填充受伤的帕伦奇马9。免疫?…

Discussion

TRAP-seq是一种通过表位标记核糖体翻译mRNA的细胞类型特异性分离技术,它提供了FACS方法的替代方法,因为它规避了FACS9的时间要求等限制。相反,TRAP允许从散装组织中直接快速有效地分离RNA,帮助避免基因表达的任何改变。TRAP-seq特别适合用于重新填充Fah-/-小鼠肝脏,因为去除尼西酮后的肝细胞扩张是细胞自主的,并且通过集成功能使肝细胞子集的基因表达分析?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了以下赠款的支持:F31-DK113666(AWW)、K01-DK102868(AMZ)、K08-DK106478(KJW)和P30-DK050306(KJW试点赠款)。

Materials

10 mL Tissue Grinder, Potter-Elv, Coated DWK Life Sciences (Wheaton) 358007
Absolutely RNA Miniprep Kit Agilent 400800
Anti-GFP antibodies Memorial Sloan-Kettering Antibody & Bioresource Core GFP Ab #19C8 and GFP Ab #19F7
Bovine Serum Albumin, IgG-Free, Protease-Free Jackson ImmunoResearch 001-000-162
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail Roche 11836170001
Cycloheximide Millipore Sigma C7698
Deoxycholic acid, DOC Millipore Sigma D2510
D-Glucose, Dextrose Fisher Scientific D16
DL-Dithiothreitol Millipore Sigma D9779
Dynabeads MyOne Streptavidin T1 Thermo Fisher Scientific 65602
Fisherbrand Petri Dishes with Clear Lid Fisher Scientific FB0875712
HBSS (10x), calcium, magnesium, no phenol red Thermo Fisher Scientific 14065-056
HEPES, 1M Solution, pH 7.3, Molecular Biology Grade, Ultrapure, Thermo Scientific Thermo Fisher Scientific AAJ16924AE
Magnesium chloride, MgCl2  Millipore Sigma M8266
Methanol Fisher Scientific A452
NanoDrop 2000/2000c Spectrophotometer Thermo Fisher Scientific VV-83061-00
NEBNext Poly(A) mRNA Magnetic Isolation Module New England BioLabs E7490S
NEBNext Ultra RNA Library Prep Kit for Illumina New England BioLabs E7530S
Nonylphenyl polyethylene glycol, NP-40. IGEPAL CA-630 Millipore Sigma I8896
Nuclease-Free Water, not DEPC-Treated Ambion AM9932
Overhead Stirrer DWK Life Sciences (Wheaton) 903475
PBS Buffer (10x), pH 7.4 Ambion AM9625
Pierce Recombinant Protein L, Biotinylated Thermo Fisher Scientific 29997
Potassium chloride, KCl Millipore Sigma P4504
RNA 6000 Pico Kit & Reagents Agilent 5067-1513
RNaseZap RNase Decontamination Solution Invitrogen AM9780
RNasin Ribonuclease Inhibitors Promega N2515
Sodium azide, NaN3 Millipore Sigma S2002
Sodium bicarbonate, NaHCO3 Millipore Sigma S6297
SUPERase·In RNase Inhibitor Invitrogen AM2694

References

  1. Taub, R. Liver regeneration: from myth to mechanism. Nature Reviews Molecular Cell Biology. 5 (10), 836-847 (2004).
  2. Lee, W. M. Etiologies of acute liver failure. Seminars in Liver Disease. 28 (2), 142-152 (2008).
  3. Sanyal, A. J., Yoon, S. K., Lencioni, R. The etiology of hepatocellular carcinoma and consequences for treatment. The Oncologist. 15 Suppl 4, 14-22 (2010).
  4. Jadlowiec, C. C., Taner, T. Liver transplantation: Current status and challenges. World Journal of Gastroenterology. 22 (18), 4438-4445 (2016).
  5. Michalopoulos, G. K., DeFrances, M. C. Liver regeneration. Science. 276 (5309), 60-66 (1997).
  6. Michalopoulos, G. K. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. The American Journal of Pathology. 176 (1), 2-13 (2010).
  7. Grompe, M., et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes & Development. 7 (12A), 2298-2307 (1993).
  8. Wangensteen, K. J., et al. A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology. 47 (5), 1714-1724 (2008).
  9. Wang, A. W., et al. TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury. The Journal of Clinical Investigation. 128 (6), 2297-2309 (2018).
  10. Heiman, M., Kulicke, R., Fenster, R. J., Greengard, P., Heintz, N. Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nature Protocols. 9 (6), 1282-1291 (2014).
  11. Agilent Technologies. . Agilent RNA 6000 Pico: User Manual. , (2016).
  12. NEBNext. . NEBNext Ultra RNA Library Prep Kit for Illumina: User Manual. , (2018).
  13. NanoDrop. . 2000/2000c Spectrophotomerter: User Manual. , (2009).
  14. Liu, J., et al. Cell-specific translational profiling in acute kidney injury. The Journal of Clinical Investigation. 124 (3), 1242-1254 (2014).
  15. Lu, S. C. Regulation of glutathione synthesis. Molecular Aspects of Medicine. 30 (1-2), 42-59 (2009).
  16. Wang, A. W., et al. The dynamic chromatin architecture of the regenerating liver. bioRxiv. , (2019).
  17. Zahm, A. M., et al. A high-content in vivo screen to identify microRNA epistasis in the repopulating mouse liver. bioRxiv. , (2019).
  18. Stork, C., Zheng, S. Genome-Wide Profiling of RNA-Protein Interactions Using CLIP-Seq. Methods in Molecular Biology. 1421, 137-151 (2016).
  19. Zhao, X., et al. Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology. 64 (3), 894-907 (2016).
  20. Halpern, K. B., et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 542 (7641), 352-356 (2017).
  21. Camp, J. G., et al. Multilineage communication regulates human liver bud development from pluripotency. Nature. 546 (7659), 533-538 (2017).
  22. Wang, Y. J., Kaestner, K. H. Single-Cell RNA-Seq of the Pancreatic Islets–a Promise Not yet Fulfilled?. Cell Metabolism. 29 (3), 539-544 (2019).
check_url/kr/60242?article_type=t

Play Video

Cite This Article
Wang, A. W., Zahm, A. M., Wangensteen, K. J. Cell Type-specific Gene Expression Profiling in the Mouse Liver. J. Vis. Exp. (151), e60242, doi:10.3791/60242 (2019).

View Video