Summary

使用主观视觉垂直范式对卷平面中的静态视觉感知的评估

Published: April 28, 2020
doi:

Summary

重力感知通常由头部直立位置的主观视觉垂直决定。滚动平面的头部倾斜处额外评估为 ± 15° 和 ± 30°,可确保增加信息含量,以检测受损的视力感知。

Abstract

前庭疾病是医学上最常见的综合征之一。近年来,引进了新的前庭诊断系统,允许在临床环境中检查所有半圆形管道。负责感知线性加速度和重力感知的骨质系统的评估方法在临床使用中要少得多。测量重力感知有几种实验方法。最常用的方法是主观视觉垂直的确定。这通常是用头部直立的位置测量的。本文介绍了一种用于测试卷平面中的骨脂函数的评估方法。主观视觉垂直在头部直立位置测量,在滚动平面中头部倾角为 ±15° 和 ± 30°。这种扩展的功能范式是一种易于执行的奥托利思功能临床测试,可确保增加信息含量,用于检测受损的认知。

Introduction

奥托利丝功能损伤可能由外设以及中央前庭条件1引起。外周前庭病因包括梅尼埃氏病、迷宫性梗死以及优劣前庭内膜炎。中枢骨骼功能障碍可能发生在从脑干到前庭皮层3的中枢骨骼通路的病变中。2此外,减少的耳李丝反射也发现在小脑疾病4。虽然一些标准化方法,如热力测试或视频头脉冲测试,可用于半圆管功能的评估,但没有标准化的临床测量方法进行重力估计和垂直感知5。

由于卵石负责线性加速度的感知,因此原则上可以通过记录所谓的转译前目反射(t-VOR)来测量线性加速度。然而,这需要使用特殊和复杂的设备,如平行摆动或线性雪橇44,6。6为了评估单侧囊和心形功能,开发了一种特定的离中心离心试验,可在具有特定旋转椅系统的平衡实验室中临床使用。当从旋转轴上取代头部 3.5⁄4 厘米时,偏心定位的 utricle 会由由此产生的离心力单方面刺激。在此范式中,通过测量结果的眼部扭转或主观的视觉垂直 (SVV) 来确定该范例的骨力函数。然而,这个程序也需要精密的设备,该方法仍然显示SVV和眼扭转评估7的敏感性有限。通过眼动记录可以进一步量化奥托利思功能。评估可以在水平或线性加速度中完成,也可以在滚动平面的头部或身体倾斜过程中进行,并应用三维视频摄影。后者允许确定眼部挫伤。该方法的临床应用也受到限制,由于其灵敏度低8。身体垂直感(即,我觉得我的身体与真正的垂直对齐的感觉)可以通过所谓的主观姿势垂直来评估。在这个实验任务中,患者坐在电动云台的椅子上,要求指示他们何时进入和退出直立位置,同时在俯仰或滚动平面上倾斜 15°。该技术的缺点是,它不仅是其精心的实验方法,而且它测量了奥托利丝和身体自体感知信号9。前庭唤起肌原性潜能(VEMPs)是否是各种临床疾病中肌瘤功能的有用的临床筛查工具,仍有争议的10,11。10,

视觉任务是目前最常用的临床测量功能的方法,可以通过主观视觉垂直(SVV)12的测量来评估。12从精确的生理角度来看,SVV并非仅对骨力功能的直接测试,因为 SVV 是多个信息源(重力、感知和视觉信息可用时)之间的权重的结果。然而,为了快速临床使用,这种SVV任务,即所谓的桶测试,已经开发了13个,特别是用于紧急设置,能够立即检测急性干扰的可感知性。更精确和标准化的过程包括让观察者将灯条或杆与估计垂直杆对齐。在黑暗中测试的健康个体在直立的位置,偏差被限制在 ± 2° 从地球垂直14。利用SVV任务,迄今在各种神经系统疾病(如中风15、16,16或帕金森病17)中评估了肝功能。此外,在18、19,19或双边前庭病变20例中,以及在良性痉挛性位置性腺体21型患者中,也报告了SVV感知受损。

我们在此介绍了一种改进的 SVV 评估方法,该方法不仅测量 SVV 估计,不仅在直立位置,而且在滚动平面中以 ± 15° 和 ± 30° 头部倾斜。该范式增加了检测肝赤字和SVV系统倾斜的信息内容。

Protocol

这项研究经维也纳医科大学道德委员会批准,并根据《赫尔辛基宣言》中的道德标准进行。在研究之前,所有患者和对照组都签署了知情同意书。 1. 将病人安装在椅子上 双目执行测量。将患者安装在带靠背和头部固定单元的稳定椅子上。后者将患者的头部保持在稳定且定义的位置,由弹性头带和 U 形头枕组成,使用粘合带相互固定。将椅子放在可可穿衣服的客舱中,…

Representative Results

SVV 评估使用旋转椅系统 (图1a)进行,该系统包括可倾斜的头枕和可调 LED 灯条。SVV 调整是通过光柱背面的测光仪显示屏的红外摄像机录制的(图 1b)。使用的设备和测试协议与此处介绍的测试方法完全一致。 SVV测量在13名健康个体中进行,平均年龄为52.8岁。性别分布为69.2%的女性和30.8%的男性。他们没有前庭疾病史,在前庭和眼…

Discussion

SVV 是一种确保垂直感的方法。它是集成了多种信息的结果。前庭系统在这种感知中至关重要,它表明,任何级别的前庭信息通路的病变都会导致SVV错误。

SVV在头部直立位置的测量现在被认为是记录骨力功能的临床标准方法。然而,这种方法受到低灵敏度的阻碍,因为健康个体在黑暗中的SVV偏差被限制在地球垂直14的±2°。先前的实验研究表明,在前面平面上…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者没有承认。

Materials

Adjustable plastic goniometer board 7,87" x 7,87", (marked tilt angles of 0°, 15° and 30° ) self-produced 6 for fixation at the backrest and for adjustment of neckrest along the given tilt angles (0°,15°,30°)
Elastic head band with adjustable screw on the back Micromedical Technologies Inc 4 modified with attached adhesive strap
HD LCD display, 1366 x 768p resolution, 19" Philips 5 for monitoring SVV-adjustments outside the cabin (infrared camera recording)
Subjective Visual Vertical Set including infrared video camera (black/white, resolution 0,25°) Micromedical Technologies Inc 2
Sytem 2000 (Rotational Vestibular Chair System with Centrifuge) Micromedical Technologies Inc., 10 Kemp Dr., Chatham, IL 62629-9769 United States 1
Tiltable headrest  Micromedical Technologies Inc 3 modified with attached adhesive strap

References

  1. Dieterich, M., Brandt, T. Perception of Verticality and Vestibular Disorders of Balance and Falls. Frontiers in Neurology. 10, 172 (2019).
  2. Elwischger, K., Rommer, P., Prayer, D., Mueller, C., Auff, E., Wiest, G. Thalamic astasia from isolated centromedian thalamic infarction. Neurology. 78 (2), 146-147 (2012).
  3. Wiest, G., Zimprich, F., Prayer, D., Czech, T., Serles, W., Baumgartner, C. Vestibular processing in human paramedian precuneus as shown by electrical cortical stimulation. Neurology. 62 (3), 473-475 (2004).
  4. Wiest, G., Tian, J. R., Baloh, R. W., Crane, B. T., Demer, J. L. Otolith function in cerebellar ataxia due to mutations in the calcium channel gene CACNA1A. Brain. 124, 2407-2416 (2001).
  5. Dakin, C. J., Rosenberg, A. Gravity estimation and verticality perception. Handbook of Clinical Neurology. 159, 43-59 (2018).
  6. Demer, J. L., Crane, B. T., Tian, J. R., Wiest, G. New tests of vestibular function. Annals of the New Yorc Academy of Science. 942, 428-445 (2001).
  7. Clarke, A. H., Schonfeld, U., Helling, K. Unilateral examination of utricle and saccule function. Journal of Vestibular Research. 13 (4-6), 215-225 (2003).
  8. Kingma, H. Clinical testing of the statolith-ocular reflex. ORL Journal for Otorhinolaryngology and its Related Specialties. 59 (4), 198-208 (1997).
  9. Bisdorff, A. R., Wolsley, C. J., Anastasopoulus, D., Bronstein, A. M., Gresty, M. A. The perception of body verticality (subjective postural vertical) in peripheral and central vestibulardisorders. Brain. 199 (5), 1523-1534 (1996).
  10. Welgampola, M. S., Colebatch, J. G. Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology. 64 (10), 1682-1688 (2005).
  11. Kingma, H. Function tests of the otolith or statolith system. Current Opinion in Neurology. 19 (1), 21-25 (2006).
  12. Kheradmand, A., Winnick, A. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex. Frontiers in Neurology. 8, 552 (2017).
  13. Zwergal, A., Rettinger, N., Frenzel, C., Dieterich, M., Brandt, T., Strupp, M. A bucket of static vestibular function. Neurology. 72 (19), 1689-1692 (2009).
  14. Bronstein, A. M. The Interaction of Otolith and Proprioceptive Information in the Perception of Verticality: The Effects of Labyrinthine and CNS Disease. Annals of the New York Academy of Science. 871, 324-333 (1999).
  15. Saeys, W., Herssens, N., Verwulgen, S., Truijen, S. Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies. PLOS ONE. 13 (6), 0199098 (2018).
  16. Baier, B., Thömke, F., Wilting, J., Heinze, C., Geber, C., Dieterich, M. A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study. Journal of Neuroscience. 32 (43), 14854-14858 (2012).
  17. Huh, Y. E., Kim, K., Chung, W., Youn, J., Kim, S., Cho, J. W. Pisa Syndrome in Parkinson’s Disease: Pathogenic Roles of Verticality Perception Deficits. Science Reports. 8 (1), 1804 (2018).
  18. Ogawa, Y., Otsuka, K., Shimizu, S., Inagaki, T., Kondo, T., Suzuki, M. Subjective visual vertical perception in patients with vestibular neuritis and sudden sensorineural hearing loss. Journal of Vestibular Research. 22 (4), 205-211 (2012).
  19. Toupet, M., Van Nechel, C., Bozorg, A., Grayeli, Influence of body laterality on recovery from subjective visual vertical tilt after vestibular neuritis. Audiology and Neurootology. 19 (4), 248-255 (2014).
  20. Lopez, C., Lacour, M., Ahmadi, A. E., Magnan, J., Borel, L. Changes of visual vertical perception: a long-term sign of unilateral and bilateral vestibular loss. Neuropsychologia. 45 (9), 2025-2037 (2007).
  21. Kitahara, T., et al. Idiopathic benign paroxysmal positional vertigo with persistent vertigo/dizziness sensation is associated with latent canal paresis, endolymphatic hydrops, and osteoporosis. Auris Nasus Larynx. 46 (1), 27-33 (2019).
  22. Platho-Elwischger, K., et al. Plasticity of static graviceptive function in patients with cervical dystonia. Journal of the Neurological Sciences. 373, 230-235 (2017).
  23. Aranda-Moreno, C., Jáuregui-Renaud, K. The subjective visual vertical in vestibular disease. Revista de Investigación Clínica. 57 (1), 22-27 (2005).
  24. Guerraz, M., Luyat, M., Poquin, D., Ohlmann, T. The role of neck afferents in subjective orientation in the visual and tactile sensory modalities. Acta Otolaryngologica. 120 (6), 735-738 (2000).
  25. Luyat, M., Noël, M., Thery, V., Gentaz, E. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt. BMC Neuroscience. 13, 28 (2012).
  26. Fraser, L. E., Makooie, B., Harris, L. R. The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates. PLOS ONE. 10 (12), 0145528 (2015).
  27. Otero-Millan, J., Kheradmand, A. Upright Perception and Ocular Torsion Change Independently during Head Tilt. Frontiers in Human Neuroscience. 10, 573 (2016).
  28. Kim, S. H., Kim, J. S. Effects of Head Position on Perception of Gravity in Vestibular Neuritis and Lateral Medullary Infarction. Frontiers in Neurology. 9, 60 (2018).
  29. Funk, J., Finke, K., Müller, H. J., Utz, K. S., Kerkhoff, G. Effects of lateral head inclination on multimodal spatial orientation judgments in neglect: Evidence for impaired spatial orientation constancy. Neuropsychologia. 48 (6), 1616-1627 (2010).
  30. Winnick, A., Sadeghpour, S., Otero-Millan, J., Chang, T. P., Kheradmand, A. Errors of Upright Perception in Patients With Vestibular Migraine. Frontiers in Neurololgy. 9, 892 (2018).
  31. Deriu, F., Ginatempo, F., Manca, A. Enhancing research quality of studies on VEMP in central neurological disorders: a scoping review. Journal of Neurophysiology. 122 (3), 1186-1206 (2019).
  32. Rosengren, S. M., Colebatch, J. G., Young, A. S., Govender, S., Welgampola, M. S. Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications. Clinical Neurophysiology Practice. 4, 47-68 (2019).
check_url/kr/60418?article_type=t

Play Video

Cite This Article
Jäger, F. I., Platho-Elwischger, K., Wiest, G. Assessment of Static Graviceptive Perception in the Roll-Plane using the Subjective Visual Vertical Paradigm. J. Vis. Exp. (158), e60418, doi:10.3791/60418 (2020).

View Video