Summary

细胞毒性细胞因子诱导的杀伤性T细胞的分离和扩张,用于癌症治疗

Published: January 24, 2020
doi:

Summary

在这里,我们提出一个协议,以执行外周血单核细胞衍生细胞诱导CD3 + CD56+杀伤细胞的分离和膨胀,并说明其细胞毒性对血液和固体癌细胞的影响,通过使用体外诊断流细胞测定系统。

Abstract

采用的细胞免疫疗法侧重于通过免疫系统恢复癌症识别,并改善有效的肿瘤细胞杀灭。据报道,细胞因子诱导杀手(CIK)T细胞疗法对癌细胞产生显著的细胞毒性作用,并减少手术、放疗和化疗在癌症治疗中的不利影响。CIK可以从外周血单核细胞(PBMC)、骨髓和脐带血中提取。CIK细胞是具有CD3+CD56+和天然杀伤性(NK)型型特征的T细胞的异构亚群,包括主要组织相容性复合物(MHC)-无限制抗肿瘤活性。本研究描述了一种合格的、临床上适用的流式细胞学方法,用于定量PBMC衍生CIK细胞的细胞解解能力,对抗血液学和固体癌细胞。在细胞解物测定中,CIK细胞与预染色靶肿瘤细胞以不同比例共同孵育。潜伏期后,目标细胞的数量由核酸结合染色确定,以检测死细胞。该方法适用于研究和诊断应用。CIK 细胞具有强效细胞毒性,通过基于 CS 和 T 的流式细胞测定系统进行临床前评估后,可探索为癌症治疗的替代策略。

Introduction

细胞毒性T淋巴细胞是一种特定的免疫效应细胞群,用于调节对癌症的免疫反应。包括淋巴素激活杀伤性(LAK)细胞、肿瘤渗透淋巴细胞(TLL)、自然杀伤细胞(NK)细胞、βT细胞和细胞因子诱导杀伤细胞(CIK)细胞在内的几种效应细胞群已开发用于采用T细胞治疗(ACT)目的1。人们对CIK细胞的兴趣日益浓厚,因为它们代表了细胞因子引起的细胞毒性细胞群的混合物,这些细胞群从自体外周血单核细胞(PMBC)2中扩展。

淋巴原细胞、骨髓细胞和淋巴细胞的无控制生长导致三种主要类型的血癌(即白血病、淋巴瘤和骨髓瘤)、实体肿瘤,包括癌瘤(如肺癌、胃癌、宫颈癌)和肉瘤等癌症3。CIK细胞是细胞群的混合物,表现出广泛的主要组织相容性复合物(MHC)-不受限制的抗肿瘤活性,从而有望治疗血液学和晚期肿瘤4,5,6,7。CIK细胞包括细胞的组合,包括T细胞(CD3+CD56+)、NK-T细胞(CD3+CD56+)和NK细胞(CD3+CD56+)。通过使用固定的时间表来添加IFN-α、抗CD3抗体和IL-2,优化CIK诱导协议,导致CIK细胞8的膨胀。CIK细胞对癌细胞的细胞毒性主要取决于NK组2成员D(C型叶酸样受体家族成员)对肿瘤细胞的NKG2D配体和穿孔素介导途径9的活性。临床前研究结果表明,IL-15刺激CIK细胞在体外诱导强效细胞毒性对原发性及急性骨髓性白血病细胞系,对正常PBMC和成纤维细胞9表现出较低的感化活性。最近,在II期临床研究中,一次性健康供体衍生CIK(1 x 108/kgCD3+细胞)输注作为骨髓异体肿瘤治疗非骨髓异体移植的合并结果发表于10。

在本研究中,我们开发了由IFN-α、IL-1+、抗CD3抗体和IL-2添加到造血细胞培养基中增加CIK产量的优化细胞培养公式,并研究了CIK细胞对人体慢性的细胞毒性作用骨髓性白血病(K562)细胞和卵巢癌(OC-3)细胞。

Protocol

临床规程按照中国医科大学机构审查委员会和医院研究伦理委员会的指导方针进行和批准。外周血标本是在健康志愿者知情同意后采集的。 1. 材料准备 储存试剂、抗体和化学品,如材料安全数据表 (MSDS) 所示。将药物或细胞因子溶解在溶剂中作为库存溶液,然后等分储存在-20°C或-80°C。注:材料准备的详细信息见材料表。 2. …

Representative Results

本方案的目的是从外周血单核细胞中分离和扩大细胞因子诱导杀伤性(CIK)T细胞,并分别评估CIK对血液恶性肿瘤和固体癌细胞的细胞毒性作用。CD3/CD56 识别确定了 CIK 的归纳。图 1A显示了 CIK 感应和扩展的协议。图1B显示了分析来自健康捐赠者的CD3+CD56+T细胞亚群的门控策略的代表性结果。图1</str…

Discussion

所述方法是一种快速、方便、可靠的方案,用于从健康献血者全血样本中分离和扩增细胞毒性细胞因子(CIK)T细胞。它还显示了CIK对白血病(K562)和卵巢癌细胞(OC-3)的细胞毒性作用,使用流式细胞仪设置和跟踪(CS & T)系统。CIK细胞可以通过GMP级细胞因子和无血清培养基在良好的生产实践(GMP)条件下诱导和扩大,以进一步临床输注11。然而,CIK诱导和扩张的功效表现出个?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了中国医科大学附属医院(DMR-Cell-1809)的支持。

Materials

7-Amino Actinomycin D BD 559925
APC Mouse Anti-Human CD56 antibody BD 555518 B159
APC Mouse IgG1, κ Isotype Control BD 555751 MOPC-21
BD FACSCanto II Flow Cytometer BD 338962 SN: R33896202856
Carboxyfluorescein diacetate succinimidyl ester (CFSE) BD 565082 Reconstritution of CFSE dye (500 mg) with 90 mL of DMSO
D-(+)-Glucose solution SIGMA G8644 For K562 cell culture. Add 12.5 mL to 500 mL of complete medium
Dulbecco's Modified Eagle Medium/F12 HyClone SH30023.02 Basal medium for OC-3 cell culture
Fetal bovine serum HyClone SH30084.03 For K562 and OC-3 cell culture. Complete medium contains 10% of FBS
Ficoll-Paque Plus GE Healthcare Life Sciences 71101700-EK Density gradient solution
FITC Mouse Anti-Human CD3 antibody BD 555332 UCHT1
FITC Mouse IgG1, κ Isotype Control BD 555748 MOPC-21
Human anti-CD3 mAb TaKaRa T210 OKT3 Add 2.5 mL of stock (1 mg/1 mL) to 50 mL of Induction medium. Storage stock at -80 °C
Penicillin-Streptomycin Gibco 15140122 Add 5 mL of stock (10,000 U/mL) to 500 mL of complete medium. Storage stock at 4 °C.
Proleukin NOVARTIS Reconstitution of Proleukin Powder (22×106 IU) with 1.2 mL of sterile water and add 2.7 mL to 50 mL of Induction medium. Storage stock at -20 °C
Recombinant Human Interferon-gamma CellGenix 1425-050 Reconstitution of rh IFN-g (5×105 IU/50 µg) with 200 µL of sterile water and add 20 mL to 50 mL of Induction medium. Storage stock at -20 °C
Recombinant Human Interleukin-1 alpha PEPROTECH 200-01A Reconstitution rh IL-1α (10 µg) with 1 mL of sterile water and add 5 mL to 50 mL of Induction medium. Storage stock at -20 °C
RPMI1640 medium Gibco 11875-085 Basal medium for K562 cell culture. Storage stock at 4 °C
Sigma 3-18K Centrifuge Sigma 10295
TrypLE Express Enzyme Gibco 12605028 Cell dissociation enzyme; For deattachment of adheren cells. Storage at room temperature
X-VIVO 15 medium Lonza 04-418Q Basal medium for PBMC and CIK cells. Storage at 4 °C

References

  1. Cappuzzello, E., et al. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine & Growth Factor Reviews. 36, 99-105 (2017).
  2. Schmidt-Wolf, R. S., et al. Propagation of large numbers of T cells with natural killer cell markers. British Journal of Haematology. 87 (3), 453-458 (1994).
  3. Grainger, S., et al. Wnt Signaling in Hematological Malignancies. Progress in Molecular Biology and Translational Science. 153, 321-341 (2018).
  4. Dai, C., et al. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget. 7 (9), 10332-10344 (2016).
  5. Schmidt-Wolf, I. G., et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. TheJournal of Experimental Medicine. 174 (1), 139-149 (1991).
  6. Introna, M., et al. Rapid and massive expansion of cord blood-derived cytokine-induced killer cells: an innovative proposal for the treatment of leukemia relapse after cord blood transplantation. Bone Marrow Transplantation. 38 (9), 621-627 (2006).
  7. Schmeel, L. C., et al. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC). Journal of Cancer Research and Clinical Oncology. 141 (5), 839-849 (2015).
  8. Rutella, S., et al. Adoptive immunotherapy with cytokine-induced killer cells generated with a new good manufacturing practice-grade protocol. Cytotherapy. 14 (7), 841-850 (2012).
  9. Nausch, N., et al. NKG2D ligands in tumor immunity. Oncogene. 27 (45), 5944-5958 (2008).
  10. Gammaitoni, L., et al. Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features. Clinical Cancer Research. 19 (16), 4347-4358 (2013).
  11. Rettinger, E., et al. The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy. 14 (1), 91-103 (2012).
  12. Narayan, R., et al. Donor-derived cytokine-induced killer cell infusion as consolidation after nonmyeloablative allogeneic transplantation for myeloid neoplasms. Biology of Blood and Marrow Transplantation. 19, 1083 (2019).
  13. Castiglia, S., et al. Cytokines induced killer cells produced in good manufacturing practices conditions: identification of the most advantageous and safest expansion method in terms of viability, cellular growth and identity. Journal of Translational Medicine. 16 (1), 237 (2018).
  14. Bonanno, G., et al. Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK) cells in clinical-grade cultures. Journal of Translational Medicine. 8, 129 (2010).
  15. Iudicone, P., et al. Interleukin-15 enhances cytokine induced killer (CIK) cytotoxic potential against epithelial cancer cell lines via an innate pathway. Human Immunology. 77 (12), 1239-1247 (2016).
  16. Liu, J., et al. Phenotypic characterization and anticancer capacity of CD8+ cytokine-induced killer cells after antigen-induced expansion. PLoS One. 12 (4), 0175704 (2017).
  17. Chen, D., et al. Cytokine-induced killer cells as a feasible adoptive immunotherapy for the treatment of lung cancer. Cell Death & Disease. 9 (3), 366 (2018).
  18. Tario, J. D. Monitoring cell proliferation by dye dilution: considerations for probe selection. Methods in Molecular Biology. 1678, 249-299 (2018).
  19. Last’ovicka, J., et al. Assessment of lymphocyte proliferation: CFSE kills dividing cells and modulates expression of activation markers. Cellular Immunology. 256 (1-2), 79-85 (2009).
  20. Yoshida, T., et al. Characterization of natural killer cells in tamarins: a technical basis for studies of innate immunity. Frontiers in Microbiology. 1, 1-9 (2010).
check_url/kr/60420?article_type=t

Play Video

Cite This Article
Hsiao, C., Chiu, Y., Chiu, S., Cho, D., Lee, L., Wen, Y., Li, J., Shih, P. Isolation and Expansion of Cytotoxic Cytokine-induced Killer T Cells for Cancer Treatment. J. Vis. Exp. (155), e60420, doi:10.3791/60420 (2020).

View Video