Summary

人类羊膜不同解剖区域的皮下细胞体外培养

Published: November 28, 2019
doi:

Summary

该协议描述了从人类羊膜的不同解剖区域分离上皮细胞,以确定其异质性和功能特性,以便可能应用于临床和物理病理学模型。

Abstract

文献中报告了关于人类羊皮上皮细胞(HAEC)的隔离和培养的若干协议。然而,这些假设羊皮上皮是同质层。人类羊膜可分为三个解剖区域:反射、胎盘和脐带。每个区域有不同的生理作用,如在病理条件下。在这里,我们描述了一个协议,解剖人类羊羊组织在三个部分,并在体外维护它。在培养中,从反射羊膜中提取的细胞呈长方体形态,而来自胎盘和脐带的细胞是鳞状的。尽管如此,所有获得的细胞都有上皮表型,通过E-cadherin的免疫检测证明。因此,由于原位胎盘和反射区域在细胞成分和分子功能上有所不同,因此体外研究可能有必要考虑这些差异,因为它们可能对HAEC的使用产生生理影响。生物医学研究及这些细胞在再生医学中的可喜应用。

Introduction

人类羊皮上皮细胞(HAEC)起源于胚胎发育的早期阶段,在受精后8天左右。它们产生于从羊膜1的最内层衍生的表征细胞的鳞状上皮细胞。因此,HAEC被认为是表征中多能细胞的残余物,有可能分化成胚胎2的三个生殖层。在过去的十年中,不同的研究小组已经开发出了在妊娠期内将这些细胞从羊膜分离出来的方法,以在体外3、4的培养模型中描述其推定多能相关特性。

因此,已发现HAEC具有人类多能干细胞(HPSC)的特征特征,如表面抗原SSEA-3、SSEA-4、TRA 1-60、TRA 1-81;多能转录因子OCT4、SOX2和NANOG的核心;和扩散标记KI67,表明他们是自我更新5,6,7。此外,这些细胞已经受到挑战,使用分化协议获得细胞阳性的生殖层(外生,中生代和内皮)4,5,8,以及人类疾病的动物模型。最后,HAEC表示E-cadherin,这表明他们保留了上皮性质很像HPSC5,9

除了胚胎来源外,HAEC还有其他内在特性,使它们适合不同的临床应用,如抗炎和抗菌分子的分泌10,11,生长因子和细胞因子释放12,不形成畸马细胞瘤时,他们移植到免疫缺陷小鼠与HPSC2对比,和免疫耐受性,因为它们表达HLA-G,减少排斥后的风险移植13.

然而,以前的报告假设人类羊膜是同质膜,没有考虑到它可以在解剖学和生理上分为三个区域:胎盘(覆盖去皮底的羊膜),脐带(包围脐带的部分),并反射(膜的其余部分不附着在胎盘上)14 。研究表明,羊驼的胎盘和反射区域在形态学、线粒体活性、活性氧物种15检测、miRNA表达16和信号通路17激活方面存在差异。这些结果表明,人类羊皮被一个具有不同功能的异质人群所整合,在原位或体外模型中进行进一步的研究应考虑。虽然其他实验室已经设计了从整个膜分离HAEC的协议,但我们的实验室已经建立了一个协议来分离、培养和表征来自不同解剖区域的细胞。

Protocol

该协议由墨西哥城国家研究所伦理委员会批准(注册号212250-21041)。这些研究中进行的所有程序均符合《国家佩里纳洛尼亚研究所》、《赫尔辛基宣言》和卫生部《墨西哥官方标准》中规定的指导方针的道德标准。 1. 准备 使用 EDTA 准备 1x PBS 解决方案。为此,将 500 μL 的 0.5 M EDTA 库存添加到 500 mL 的 1x PBS 中,最终浓度为 0.5 mM EDTA。 为 HAEC 准备培养基。服用450 …

Representative Results

HAEC从羊膜的三个解剖区域分离出来,并在体外单独培养。在培养48小时后,具有上皮表型的细胞附着在板表面,尽管介质中也含有细胞碎片和浮细胞,一旦介质改变,这些细胞被移除(图3)。 在初级培养物(通道零,P0)的处理过程中,可能会出现一些并发症,从而干扰实验数据分析(图4):在识别试剂污染或分离过程中存在细?…

Discussion

我们实现了一种新的协议,将HAEC与术语膜分离开来。它不同于以前的报告,因为每个膜在分离前被分成三个解剖区域,以分析每个膜的细胞。

该协议中最关键的步骤之一是清洗膜以去除所有血块,因为它们在分离上皮细胞时会干扰胰蛋白酶的活动。未能正确执行此步骤可能导致获得具有过量红细胞和很少粘附上皮细胞的主要培养物。如果在设定细胞种子后的前 24-48 小时未观…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们的研究得到了墨西哥国家研究所(21041年和21081年)和国家委员会(A1-S-8450和252756)的资助。我们感谢杰西卡·冈萨雷斯·诺里斯和莉迪亚·尤里娅·帕里德斯·维维斯的技术支持。

Materials

Culture reagents
2-Mercaptoethanol Thermo Fisher Scientific/Gibco 21985023 55 mM
Animal-Free Recombinant Human EGF Peprotech AF-100-15
Antibiotic-Antimycotic Thermo Fisher Scientific/Gibco 15240062 100X
Dulbecco's Modified Eagle Medium Thermo Fisher Scientific/Gibco 12430054 Supplemented with high glucose and HEPES
EDTA Thermo Fisher Scientific/Ambion AM9260G 0.5 M
Embryonic stem-cell FBS, qualified Thermo Fisher Scientific/Gibco 10439024
Non-Essential Amino Acids Thermo Fisher Scientific/Gibco 11140050 100X
Paraformaldehyde any brand
Phosphate-Buffered Saline Thermo Fisher Scientific/Gibco 10010023 1X
Saline solution (sodium chloride 0.9%) any brand
Sodium Pyruvate Thermo Fisher Scientific/Gibco 11360070 100 mM
Trypsin/EDTA 0.05% Thermo Fisher Scientific/Gibco 25300054
Disposable material
100 µm Cell Strainer Corning/Falcon 352360
100 mm TC-Treated Culture Dish Corning 430167
24-well Clear TC-treated Multiple Well Plates Corning/Costar 3526
6-well Clear TC-treated Multiple Well Plates Corning/Costar 3516
Non-Pyrogenic Sterile Centrifuge Tube any brand with conical bottom
Non-Pyrogenic sterile tips of 1,000 µl, 200 µl and 10 µl.
Sterile cotton gauzes
Sterile serological pipettes of 5, 10 and 25 mL any brand
Sterile surgical gloves any brand
Equipment
Biological safety cabinet
Centrifuge
Micropipettes
Motorized Pipet Filler/Dispenser
Sterile beakers of 500 mL
Sterile plastic cutting board
Sterile scalpels, scissors, forceps, clamps
Sterile stainless steel container
Sterile tray
Tube Rotator MaCSmix
Antibodies and Kits Antibody ID
Anti-E-cadherin BD Biosciences 610181 RRID:AB_3975
Anti-KI67 Santa Cruz 23900 RRID:AB_627859)
Anti-NANOG Peprotech 500-P236 RRID:AB_1268274
Anti-OCT4 Abcam ab19857 RRID:AB_44517
Anti-SOX2 Millipore AB5603 RRID:AB_2286686
Anti-SSEA-4 Cell Signaling 4755 RRID:AB_1264259
Anti-TRA-1-60 Cell Signaling 4746 RRID:AB_2119059
Goat Anti-Mouse Alexa Fluor 488 Thermo Fisher Scientific A-11029 RRID:AB_2534088
Goat Anti-Rabbit Alexa Fluor 568 Thermo Fisher Scientific A-11036 RRID:AB_10563566
Tunel Assay Kit Abcam 66110

References

  1. Shahbazi, M. N., et al. Self-organization of the human embryo in the absence of maternal tissues. Nature Cell Biology. 18 (6), 700-708 (2016).
  2. Garcia-Lopez, G., et al. Human amniotic epithelium (HAE) as a possible source of stem cells (SC). Gaceta Medica de Mexico. 151 (1), 66-74 (2015).
  3. Gramignoli, R., Srinivasan, R. C., Kannisto, K., Strom, S. C. Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures. Current Protocols in Stem Cell Biology. 37, (2016).
  4. Murphy, S., et al. Amnion epithelial cell isolation and characterization for clinical use. Current Protocols in Stem Cell Biology. , (2010).
  5. Garcia-Castro, I. L., et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS One. 10 (12), 0146082 (2015).
  6. Garcia-Lopez, G., et al. Pluripotency markers in tissue and cultivated cells in vitro of different regions of human amniotic epithelium. Experimental Cell Research. 375 (1), 31-41 (2019).
  7. Yang, P. J., et al. Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation. Acta Pharmacological Sinica. 39 (8), 1305-1316 (2018).
  8. Zou, G., et al. MicroRNA32 silences WWP2 expression to maintain the pluripotency of human amniotic epithelial stem cells and beta isletlike cell differentiation. International Journal of Molecular Medicine. 41 (4), 1983-1991 (2018).
  9. Avila-Gonzalez, D., et al. Capturing the ephemeral human pluripotent state. Developmental Dynamics. 245 (7), 762-773 (2016).
  10. Niknejad, H., et al. Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials. 15, 88-99 (2008).
  11. Miki, T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. American Journal of Reproductive Immunology. 80 (4), 13003 (2018).
  12. Wu, Q., et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. International Journal of Molecular Medicine. 39 (4), 918-926 (2017).
  13. Hammer, A., et al. Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. American Journal of Reproductive Immunology. 37 (2), 161-171 (1997).
  14. Benirschke, K., et al. Anatomy and Pathology of the Placental Membranes. Pathology of the Human Placenta. , 268-318 (1995).
  15. Banerjee, A., et al. Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta. 36 (11), 1329-1332 (2015).
  16. Kim, S. Y., et al. miR-143 regulation of prostaglandin-endoperoxidase synthase 2 in the amnion: implications for human parturition at term. PLoS One. 6 (9), 24131 (2011).
  17. Han, Y. M., et al. Region-specific gene expression profiling: novel evidence for biological heterogeneity of the human amnion. Biology of Reproduction. 79 (5), 954-961 (2008).
  18. Alcaraz, A., et al. Autocrine TGF-beta induces epithelial to mesenchymal transition in human amniotic epithelial cells. Cell Transplantation. 22 (8), 1351-1367 (2013).
  19. Canciello, A., et al. Progesterone prevents epithelial-mesenchymal transition of ovine amniotic epithelial cells and enhances their immunomodulatory properties. Scientific Reports. 7 (1), 3761 (2017).
  20. Canciello, A., Greco, L., Russo, V., Barboni, B. Amniotic Epithelial Cell Culture. Methods in Molecular Biology. 1817, 67-78 (2018).
  21. Singh, A. M., et al. Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell. 10 (3), 312-326 (2012).
  22. Villa-Diaz, L. G., Kim, J. K., Laperle, A., Palecek, S. P., Krebsbach, P. H. Inhibition of Focal Adhesion Kinase Signaling by Integrin alpha6beta1 Supports Human Pluripotent Stem Cell Self-Renewal. Stem Cells. 34 (7), 1753-1764 (2016).
  23. Bednar, A. D., Beardall, M. K., Brace, R. A., Cheung, C. Y. Differential expression and regional distribution of aquaporins in amnion of normal and gestational diabetic pregnancies. Physiological Reports. 3 (3), 12320 (2015).
  24. Avila-Gonzalez, D., et al. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos. Stem Cell Research. 15 (2), 322-324 (2015).
check_url/kr/60551?article_type=t

Play Video

Cite This Article
Avila-González, D., García-López, G., Díaz-Martínez, N. E., Flores-Herrera, H., Molina-Hernández, A., Portillo, W., Díaz, N. F. In Vitro Culture of Epithelial Cells from Different Anatomical Regions of the Human Amniotic Membrane. J. Vis. Exp. (153), e60551, doi:10.3791/60551 (2019).

View Video