Summary

使用 Flanker 任务进行并发脑电图和功能近红外光谱记录

Published: May 24, 2020
doi:

Summary

本协议介绍了如何执行并发EEG和fNIRS记录以及如何检查EEG和fNIRS数据之间的关系。

Abstract

并发EEG和fNIRS记录提供了一个绝佳的机会,通过检查神经和血液动力学信号之间的关系,全面了解认知处理的神经机制。脑电图是一种电生理学技术,可以测量皮层的快速神经元活动,而fNIRS依靠血液动力学反应来推断大脑激活。EEG和fNIRS神经成像技术的结合可以识别更多的特征,并揭示与大脑功能相关的更多信息。在此协议中,对在 Flanker 任务期间调用电电电位和血液动力学响应的并发记录进行了融合 EEG-fNIRS 测量。此外,还详细介绍了建立硬件和软件系统的关键步骤以及数据采集和分析程序。预计本协议可以通过使用EEG和fNIRS信号,为增进对各种认知过程背后的神经机制的理解开辟一条新途径。

Introduction

本研究旨在开发一种工作协议,通过使用融合EEG和fNIRS神经成像技术来揭示Flanker任务背后的神经激活模式。有趣的是,并发fNIRS-EEG记录允许检查前额叶皮层的血液动力学信号与整个大脑中与Flanker任务相关的各种事件相关电位(ERP)成分之间的关系。

各种非侵入性神经成像模式的整合,包括功能近红外光谱(fNIRS)、脑电图(EEG)和功能磁共振成像(fMRI)对于增进,对大脑1、2、32中信息处理地点和时间的理解至关重要。13此外,还有可能结合fNIRS和EEG来研究局部神经活动与随后血液动力学反应变化之间的关系,其中脑电图和fNIRS在揭示人脑认知功能的神经机制方面可以相互补充。fNIRS是一种基于血管的功能性神经成像技术,依靠血液动力学反应来推断大脑激活。fNIRS测量大脑皮层的相对氧血红蛋白(HbO)和脱氧血红蛋白(HbR)浓度变化,在认知处理33、4、5、6、74,5,6,7研究中起着重要作用。根据神经血管和神经代谢耦合机制8,与认知处理相关的局部神经活动的变化通常伴随着局部血流和血氧的后续变化,延迟4-7秒。结果表明,神经血管耦合很可能是一种功率传感器,它将神经活动的快速动力学集成到慢性血管动力学9的血管输入中。具体来说,fNIRS主要用于检查前额叶的神经血管活动,特别是负责高认知功能的前额皮质,如执行功能10、11、12、11,12推理和规划13、决策14、社会认知和道德判断15。10然而,fNIRS测量的血液动力学反应仅间接捕获具有低时分辨率的神经活动,而脑电图可以提供时间上精细和直接的神经活动测量。因此,EEG和fNIRS记录的组合可以识别更多的特征,并揭示与大脑功能相关的更多信息。

更重要的是,已进行多模态采集脑电图和fNIRS信号,以检查各种认知任务16、17、18、19、20、21、2221,22或脑-计算机接口16,17,18,19,20,23、24,24背后的大脑激活。特别是,并发ERP(事件相关电位)和fNIRS记录基于事件相关的听觉怪球范式1进行,其中fNIRS可以在P300组件出现几秒钟后识别前时叶皮层的血液动力学变化。霍罗维茨等人还演示了在语义处理任务25中同时测量fNIRS信号和P300分量。有趣的是,以前基于同时EEG和fNIRS记录的研究表明,在奇球刺激期间,P300与fNIRS信号26表现出显著的相关性。结果发现,多模式测量具有揭示基于事件相关范式26的综合认知神经机制的潜力。除了怪球任务外,与ERP组件N200相关的Flanker任务也是一个重要的范例,可用于研究认知能力检测和评估与健康控制和各种疾病患者。具体来说,N200是一个负分量,从前结形皮层前额27和优越的叶皮层28峰200-350毫秒。虽然先前的研究研究了Flanker任务29中上前皮层和α振荡之间的关系,但N200振幅与Flanker任务期间的血液动力学反应之间的相关性尚未探索。

在此协议中,基于标准 EEG 帽的自制 EEG/fNIRS 修补程序用于并发 EEG 和 fNIRS 记录。光子/电极的排列与支持是通过放置fNIRS光子融合到脑电图帽。同时进行EEG和fNIRS数据采集时,与E-prime软件产生的激励任务相同。我们假设与 Flanker 任务相关的 ERP 组件与前额叶皮层的血动力学反应有显著的相关性。同时,结合ERP和fNIRS记录可以提取多个信号指示器,以更高的精度识别大脑激活模式。为了验证这一假设,将fNIRS设置和EEG机集成在一起,揭示了与事件相关的Flanker任务对应的复杂神经认知机制。

Protocol

在实验测试之前,所有参与者都签署了知情同意文件。本研究议定书获澳门大学道德委员会批准。 1. 用于并发 EEG 和 fNIRS 录像的硬件和软件设置 为并发 EEG-fNIRS 录制构建头盖。 根据参与者的头部周长选择适当的盖尺寸。在这项研究中,使用中等大小的帽子,因为它适合大多数青少年和成人参与者。 在前额叶皮层中设计fNIRS视点与脑电图帽的布局(<strong …

Representative Results

图 2显示了所有通道的 HbO 信号,而图 3显示了 Fz 和 FCz 的 ErP 以及 Flanker 任务的两个条件。Figure 4说明了 Pearson 相关分析结果表明,SFC 中的 fNIRS 信号在不一致条件(P<0.05) 中与 Fz 的 ERP N200 组件存在显著相关性。但是,对于一致条件(P>0.05),情况并非如此。 <p class="jove_content" fo:keep-together.within-p…

Discussion

在此协议中,通过记录整个大脑的神经信号和前额叶皮层的并发血液动力学反应,执行联合EEG和fNIRS记录,以检查涉及事件相关的Flanker范式的大脑激活模式。ERP 结果表明,Fz 的 N200 能够显著区分一致和不一致条件(P=0.037)。同时,SFC中的HbO信号(通道21)也表现出一致和不一致条件之间的显著差异,这表明抑制与Flanker任务相关的大脑认知功能的反应(PFDR = 0.041)的重要作用。

<p class="…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分在高性能计算集群(HPCC)进行,该集群由澳门大学信息和通信技术办公室(ICTO)提供支持。这项研究由澳门大学MYRG2019-00082-FHS和MYRG2018-00081-FHS资助,并由澳门特区科技发展基金(FDCT 0011/2018/A1和FDCT025/2015/A1)资助。

Materials

EEG cap EASYCAP GmbH
EEG system BioSemi
fNIRS system TechEn CW6 System

References

  1. Kennan, R. P., et al. Simultaneous recording of event-related auditory oddball response using transcranial near infrared optical topography and surface EEG. NeuroImage. 16 (3), 587-592 (2002).
  2. Horovitz, S. G., Gore, J. C. Simultaneous event-related potential and near-infrared spectroscopic studies of semantic processing. Human Brain Mapping. 22 (2), 110-115 (2004).
  3. Yuan, Z., Ye, J. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Frontiers in Human Neuroscience. 7, 676 (2013).
  4. Lin, X., Sai, L., Yuan, Z. Detecting Concealed Information with Fused Electroencephalography and Functional Near-infrared Spectroscopy. 신경과학. 386, 284-294 (2018).
  5. Ieong, H. F., Yuan, Z. Emotion recognition and its relation to prefrontal function and network in heroin plus nicotine dependence: a pilot study. Neurophotonics. 5 (02), 1 (2018).
  6. Hu, Z., et al. Optical Mapping of Brain Activation and Connectivity in Occipitotemporal Cortex During Chinese Character Recognition. Brain Topography. 31 (6), 1014-1028 (2018).
  7. Wang, M. -. Y., et al. Concurrent mapping of brain activation from multiple subjects during social interaction by hyperscanning: a mini-review. Quantitative Imaging in Medicine and Surgery. 8 (8), 819-837 (2018).
  8. Scholkmann, F., et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage. 85, 6-27 (2014).
  9. Wan, X., et al. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. NeuroImage. 32 (2), 616-625 (2006).
  10. Miller, E. K. The prefontral cortex and cognitive control. Nature Reviews Neuroscience. 1 (1), 59-65 (2000).
  11. Miller, E. K., Cohen, J. D. An integrative theory of prefrontal cortex function. Annual review of Neuroscience. 24 (1), 167-202 (2001).
  12. Mansouri, F. A., Tanaka, K., Buckley, M. J. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience. 10 (2), 141-152 (2009).
  13. Wood, J. N., Grafman, J. Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience. 4 (2), 139-147 (2003).
  14. Wallis, J. D. Orbitofrontal Cortex and Its Contribution to Decision-Making. Annual Review of Neuroscience. 30 (1), 31-56 (2007).
  15. Forbes, C. E., Grafman, J. The Role of the Human Prefrontal Cortex in Social Cognition and Moral Judgment. Annual Review of Neuroscience. 33 (1), 299-324 (2010).
  16. Nguyen, D. K., et al. Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures. Epilepsy Research. 99 (1-2), 112-126 (2012).
  17. Peng, K., et al. fNIRS-EEG study of focal interictal epileptiform discharges. Epilepsy Research. 108 (3), 491-505 (2014).
  18. Liu, Y., Ayaz, H., Shewokis, P. A. Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Frontiers in Human Neuroscience. 11, (2017).
  19. Aghajani, H., Garbey, M., Omurtag, A. Measuring mental workload with EEG+fNIRS. Frontiers in Human Neuroscience. 11, (2017).
  20. Balconi, M., Vanutelli, M. E. Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation. Scientific Reports. 6, (2016).
  21. Donohue, S. E., Appelbaum, L. G., McKay, C. C., Woldorff, M. G. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands. Neuropsychologia. 84, 14-28 (2016).
  22. Liu, Y., Ayaz, H., Shewokis, P. A. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain-Computer Interfaces. 4 (3), 175-185 (2017).
  23. Fazli, S., et al. Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage. 59 (1), 519-529 (2012).
  24. Putze, F., et al. Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Frontiers in Neuroscience. 8, 373 (2014).
  25. Horovitz, S. G., Gore, J. C. Simultaneous event-related potential and near-infrared spectroscopic studies of semantic processing. Human Brain Mapping. 22 (2), 110-115 (2004).
  26. Lin, X., et al. Mapping the small-world properties of brain networks in Chinese to English simultaneous interpreting by using functional near-infrared spectroscopy. Journal of Innovative Optical Health Sciences. 11 (03), 1840001 (2018).
  27. Folstein, J. R., Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology. 45 (1), 152 (2008).
  28. Patel, S. H., Azzam, P. N. Characterization of N200 and P300: Selected studies of the Event-Related Potential. International Journal of Medical Sciences. 2 (4), 147-154 (2005).
  29. Suzuki, K., et al. The relationship between the superior frontal cortex and alpha oscillation in a flanker task: Simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS). Neuroscience Research. 131, 30-35 (2018).
  30. Keles, H. O., Barbour, R. L., Omurtag, A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG + fNIRS. NeuroImage. 138, 76-87 (2016).
  31. Eriksen, B. A., Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. 16 (1), 143-149 (1974).
  32. Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied optics. 48 (10), 280-289 (2009).
  33. Kocsis, L., Herman, P., Eke, A. The modified Beer-Lambert law revisited. Physics in Medicine and Biology. 51 (5), (2006).
  34. Herold, F., Wiegel, P., Scholkmann, F., Müller, N. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise-Cognition Science: A Systematic, Methodology-Focused Review. Journal of Clinical Medicine. 7 (12), 466 (2018).
  35. Duncan, A., et al. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Physics in Medicine and Biology. 40 (2), 295-304 (1995).
  36. Brigadoi, S., et al. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage. 85, 181-191 (2014).
  37. Lopez-Calderon, J., Luck, S. J. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience. 8, 213 (2014).
check_url/kr/60669?article_type=t

Play Video

Cite This Article
Xu, S. Y., Cheong, L. I., Zhuang, Y., Couto, T. A. P., Yuan, Z. Conducting Concurrent Electroencephalography and Functional Near-Infrared Spectroscopy Recordings with a Flanker Task. J. Vis. Exp. (159), e60669, doi:10.3791/60669 (2020).

View Video