Summary

猪心室颤动和高级心脏生命支持标准化模型

Published: January 30, 2020
doi:

Summary

心肺复苏和除颤是心室颤动引起的心脏骤停期间唯一有效的治疗方案。该模型提出了在猪模型中诱导、评估和治疗这种生理状态的标准化方案,从而提供了一种临床方法,为数据收集和分析提供了各种机会。

Abstract

心脏骤停后心肺复苏,与心脏骤停无关,是医院以及临床前经常遇到的医疗紧急情况。人体的前瞻性随机试验难以设计,在伦理上模棱两可,导致缺乏循证疗法。本报告中提出的模型代表了心脏骤停、心室颤动的最常见原因之一,在大型动物模型中的标准化环境中。这允许在临床准确条件下进行可重复的观察和各种治疗干预,从而有助于生成更好的证据,并最终改善医疗治疗的潜力。

Introduction

心脏骤停和心肺复苏(CPR)是医院病房中经常遇到的医疗紧急情况,以及临床前急诊提供者方案1,2。虽然已经作出广泛的努力来描述这种情况的最佳治疗3,4,5,6,国际准则和专家建议(例如,ERC和ILCOR)通常依靠低级证据,由于缺乏前瞻性的随机试验3,4,5,7,8,9。这在一定程度上是由于在人体试验10中关于随机复苏协议的明显伦理保留。然而,这也可能指向在面对威胁生命和压力的情况11,12时缺乏严格的协议遵守。本报告提出的协议旨在提供一个标准化的临床复苏模型,在无需人体受试者的情况下,生成有价值的前瞻性数据,同时尽可能有效和准确。它遵循共同的复苏指南,易于应用,使研究能够在关键但有控制的环境中检查和描述各个方面和干预措施。这将导致 1) 更好地了解心脏骤停和心室颤动背后的病理机制,2) 高质量的证据,以优化治疗方案和提高存活率。

Protocol

这一议定书的实验得到了国家和机构动物照料委员会的批准(德国科布伦茨州兰登苏松桑特莱茵兰-普法尔茨;主席:西尔维亚·艾施-沃尔夫博士;批准号。G16-1-042)。实验是按照《到达指南》进行的。七只麻醉雄猪(susscrofa家猪),平均体重为30~2公斤,年龄为12-16周。 1. 麻醉、插管和机械通风13、14 尽可能长时间地保持…

Representative Results

七头猪心脏骤停。四头猪在心肺复苏后自发循环的回归(57%)均值为 3 × 1 双相颤化。在整个实验中,健康且充分麻醉的猪应保持苏皮状态,没有颤抖和激动的迹象。平均动脉血压不应降到50毫米汞柱以下,然后开始颤动18。为了获得最佳结果,可以进行血气分析,并对所有值(包括温度)进行标准化。 如果?…

Discussion

关于猪模型麻醉的一些主要技术问题,我们小组13,14已经描述了。这些措施包括严格避免动物的压力和不必要的疼痛,在气道管理中可能出现的解剖问题,以及具体的人员要求19。

此外,超声导管插入的好处以前已经强调,并且仍然是在仪器仪表期间防止血管损伤的可取方法。然而,只有经过专业培训的用户才能…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢达格玛·迪尔文斯基斯的出色技术支持。

Materials

1 M- Kaliumchlorid-Lösung 7,46% 20ml Fresenius, Kabi Deutschland GmbH potassium chloride
Arterenol 1mg/ml 25 ml Sanofi- Aventis, Seutschland GmbH norepinephrine
Atracurium Hikma 50mg/5ml Hikma Pharma GmbH, Martinsried atracurium
BD Discardit II Spritze 2,5,10,20 ml Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain syringe
BD Luer Connecta Becton Dickinson Infusion Therapy AB Helsingborg, Schweden 3-way-stopcock
BD Microlance 3 20 G Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain canula
CorPatch Easy Electrodes CorPuls, Kaufering, Germany defibrillator electrodes
Corpuls 3 Corpuls, Kaufering, Germany defibrillator
Datex Ohmeda S5 GE Healthcare Finland Oy, Helsinki, Finland hemodynamic monitor
Engström Carestation GE Heathcare, Madison USA ventilator
Fentanyl-Janssen 0,05mg/ml Janssen-Cilag GmbH, Neuss fentanyl
Führungsstab, Durchmesser 4.3 Rüsch endotracheal tube introducer
Incetomat-line 150 cm Fresenius, Kabi Deutschland GmbH perfusorline
Ketamin-Hameln 50mg/ml Hameln Pharmaceuticals GmbH ketamine
laryngoscope Rüsch laryngoscope
logicath 7 Fr 3-lumen 30cm lang Smith- Medical Deutschland GmbH central venous catheter
LUCAS-2 Physio-Control/Stryker, Redmond, WA, USA chest compression device
Masimo Radical 7 Masimo Corporation Irvine, Ca 92618 USA periphereal oxygen saturation
Neofox Oxygen sensor 300 micron fiber Ocean optics Largo, FL USA ultrafast pO2-measurements
Ölsäure reinst Ph. Eur NF C18H34O2 M0282,47g/mol Dichte 0,9 Applichem GmbH Darmstadt, Deutschland oleic acid
Original Perfusor syringe 50ml Luer Lock B.Braun Melsungen AG, Germany perfusorsyringe
Osypka pace, 110 cm Osypka Medical GmbH, Rheinfelden-Herten, Germany Pacing/fibrillation catheter
PA-Katheter Swan Ganz 7,5 Fr 110cm Edwards Lifesciences LLC, Irvine CA, USA PAC
Percutaneous sheath introducer set 8,5 und 9 Fr, 10 cm with integral haemostasis valve/sideport Arrow international inc. Reading, PA, USA introducer sheath
Perfusor FM Braun B.Braun Melsungen AG, Germany syringe pump
Propofol 2% 20mg/ml (50ml flasks) Fresenius, Kabi Deutschland GmbH propofol
Radifocus Introducer II, 5-8 Fr Terumo Corporation Tokio, Japan introducer sheath
Rüschelit Super Safety Clear >ID 6/ 6,5 /7,0 mm Teleflex Medical Sdn. Bhd, Malaysia endotracheal tube
Seldinger Nadel mit Fixierflügel Smith- Medical Deutschland GmbH seldinger canula
Sonosite Micromaxx Ultrasoundsystem Sonosite Bothell, WA, USA ultrasound
Stainless Macintosh Größe 4 Welsch Allyn69604 blade for laryngoscope
Stresnil 40mg/ml Lilly Deutschland GmbH, Abteilung Elanco Animal Health azaperone
Vasofix Safety 22G-16G B.Braun Melsungen AG, Germany venous catheter
Voltcraft Model 8202 Voltcraft, Hirschau, Germany oscilloscope/function generator

References

  1. Grasner, J. T., et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 105, 188-195 (2016).
  2. Raffee, L. A., et al. Incidence, Characteristics, and Survival Trend of Cardiopulmonary Resuscitation Following In-hospital Compared to Out-of-hospital Cardiac Arrest in Northern Jordan. Indian Journal of Critical Care Medicine. 21 (7), 436-441 (2017).
  3. Brooks, S. C., et al. Part 6: Alternative Techniques and Ancillary Devices for Cardiopulmonary Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S436-S443 (2015).
  4. Callaway, C. W., et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 132 (16 Suppl 1), S84-S145 (2015).
  5. Sandroni, C., Nolan, J. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiology. 77 (2), 220-226 (2011).
  6. Tanaka, H., et al. Modifiable Factors Associated With Survival After Out-of-Hospital Cardiac Arrest in the Pan-Asian Resuscitation Outcomes Study. Annals of Emergency Medicine. , (2017).
  7. Kleinman, M. E., et al. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S414-S435 (2015).
  8. Link, M. S., et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S444-S464 (2015).
  9. Olasveengen, T. M., et al. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Circulation. 136 (23), e424-e440 (2017).
  10. Rubulotta, F., Rubulotta, G. Cardiopulmonary resuscitation and ethics. Revista Brasileira de Terapia Intensiva. 25 (4), 265-269 (2013).
  11. McInnes, A. D., et al. The first quantitative report of ventilation rate during in-hospital resuscitation of older children and adolescents. Resuscitation. 82 (8), 1025-1029 (2011).
  12. Maertens, V. L., et al. Patients with cardiac arrest are ventilated two times faster than guidelines recommend: an observational prehospital study using tracheal pressure measurement. Resuscitation. 84 (7), 921-926 (2013).
  13. Ziebart, A., et al. Standardized Hemorrhagic Shock Induction Guided by Cerebral Oximetry and Extended Hemodynamic Monitoring in Pigs. Journal of Visualized Experiments. (147), (2019).
  14. Kamuf, J., et al. Oleic Acid-Injection in Pigs As a Model for Acute Respiratory Distress Syndrome. Journal of Visualized Experiments. (140), (2018).
  15. Weiner, M. M., Geldard, P., Mittnacht, A. J. Ultrasound-guided vascular access: a comprehensive review. Journal of Cardiothoracic and Vascular Anesthesiology. 27 (2), 345-360 (2013).
  16. Mayer, J., Suttner, S. Cardiac output derived from arterial pressure waveform. Current Opinions in Anaesthesiology. 22 (6), 804-808 (2009).
  17. Hartmann, E. K., et al. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation. Acta Anaesthesiologica Scandanivica. 58 (8), 1032-1039 (2014).
  18. Ruemmler, R., et al. Ultra-low tidal volume ventilation-A novel and effective ventilation strategy during experimental cardiopulmonary resuscitation. Resuscitation. 132, 56-62 (2018).
  19. Wani, T. M., et al. Upper airway in infants-a computed tomography-based analysis. Paediatric Anaesthesia. 27 (5), 501-505 (2017).
  20. Tuna Katircibasi, M., et al. Comparison of Ultrasound Guidance and Conventional Method for Common Femoral Artery Cannulation: A Prospective Study of 939 Patients. Acta Cardiol Sin. 34 (5), 394-398 (2018).
  21. Hartmann, E. K., et al. Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Medicine. 39 (7), 1313-1317 (2013).
  22. Hartmann, E. K., et al. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiol Scand. 57 (3), 334-341 (2013).
  23. Ziebart, A., et al. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. Respiratory Research. 15, 101 (2014).
  24. Tan, D., et al. Duration of cardiac arrest requires different ventilation volumes during cardiopulmonary resuscitation in a pig model. Journal of Clinical Monitoring and Computing. , (2019).
  25. Kill, C., et al. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model. Critical Care Medicine. 42 (2), e89-e95 (2014).
  26. Speer, T., et al. Mechanical Ventilation During Resuscitation: How Manual Chest Compressions Affect a Ventilator’s Function. Advances in Therapy. 34 (10), 2333-2344 (2017).
  27. Kill, C., et al. Chest Compression Synchronized Ventilation versus Intermitted Positive Pressure Ventilation during Cardiopulmonary Resuscitation in a Pig Model. PLoS ONE. 10 (5), e0127759 (2015).
  28. Newell, C., Grier, S., Soar, J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Critical Care. 22 (1), 190 (2018).
check_url/kr/60707?article_type=t

Play Video

Cite This Article
Ruemmler, R., Ziebart, A., Garcia-Bardon, A., Kamuf, J., Hartmann, E. K. Standardized Model of Ventricular Fibrillation and Advanced Cardiac Life Support in Swine. J. Vis. Exp. (155), e60707, doi:10.3791/60707 (2020).

View Video