Summary

Modello standardizzato di fibrillazione ventricolare e supporto avanzato per la vita cardiaca in suina

Published: January 30, 2020
doi:

Summary

La rianimazione cardiopolmonare e la defibrillazione sono le uniche opzioni terapeutiche efficaci durante l’arresto cardiaco causato dalla fibrillazione ventricolare. Questo modello presenta un regime standardizzato per indurre, valutare e trattare questo stato fisiologico in un modello di porcellana, fornendo così un approccio clinico con varie opportunità per la raccolta e l’analisi dei dati.

Abstract

La rianimazione cardiopolmonare dopo l’arresto cardiaco, indipendentemente dalla sua origine, è un’emergenza medica regolarmente riscontrata negli ospedali e negli ambienti preclinici. Prove randomizzate prospettiche in soggetti umani sono difficili da progettare ed eticamente ambigue, il che si traduce in una mancanza di terapie basate su prove. Il modello presentato in questa relazione rappresenta una delle cause più comuni di arresti cardiaci, fibrillazione ventricolare, in un ambiente standardizzato in un grande modello animale. Ciò consente osservazioni riproducibili e vari interventi terapeutici in condizioni clinicamente accurate, facilitando così la generazione di prove migliori e, infine, il potenziale per un miglioramento del trattamento medico.

Introduction

Arresto cardiaco e rianimazione cardiopolmonare (CPR) si incontrano regolarmente emergenze mediche nei reparti ospedalieri e scenari preclinici di fornitori di emergenza1,2. Mentre ci sono stati ampi sforzi per caratterizzare il trattamento ottimale per questa situazione3,4,5,6, linee guida internazionali e raccomandazioni di esperti (ad esempio, ERC e ILCOR) di solito si basano su prove di basso grado a causa della mancanza di prove randomizzate prospettiche3,4,5,7,8,9. Ciò è in parte dovuto a ovvie riserve etiche riguardanti i protocolli di rianimazione randomizzati nelle prove umane10. Tuttavia, questo può anche indicare una mancanza di stretta aderenza al protocollo di fronte a una situazione pericolosa per la vita e stressante11,12. Il protocollo presentato in questa relazione mira a fornire un modello di rianimazione standardizzato in un ambiente clinico realistico, che genera dati preziosi e futuri pur essendo il più valido e accurato possibile senza la necessità di soggetti umani. Aderisce alle linee guida comuni di rianimazione, può essere facilmente applicato e consente alle ricerche di esaminare e caratterizzare vari aspetti e interventi in un ambiente critico ma controllato. Questo porterà a 1) una migliore comprensione dei meccanismi patologici alla base dell’arresto cardiaco e della fibrillazione ventricolare e 2) prove di qualità superiore al fine di ottimizzare le opzioni di trattamento e aumentare i tassi di sopravvivenza.

Protocol

Gli esperimenti in questo protocollo sono stati approvati dal Comitato statale e istituzionale per la cura degli animali (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germania; Presidente: Dr. Silvia Eisch-Wolf; approvazione n. G16-1-042). Gli esperimenti sono stati condotti in conformità con le linee guida DELL’INSE. Nel protocollo sono stati inclusi sette suini maschi anestesi (sus scrofa domestica) con un peso medio di 30 x 2 kg e 12-16 settimane di età. 1. Anestesia, intubazio…

Representative Results

L’arresto cardiaco è stato indotto in sette maiali. Il ritorno della circolazione spontanea dopo la RCP è stato ottenuto in quattro suini (57%) con una media di 3 x 1 defibrillazioni bifasiche. I suini sani e adeguatamente anestesisti devono rimanere in posizione supina senza brividi e segni di agitazione durante l’intero esperimento. La pressione sanguigna arteriosa media non deve scendere al di sotto di 50 mmHg prima dell’inizio della fibrillazione18. Per otten…

Discussion

Alcuni importanti problemi tecnici riguardanti l’anestesia in un modello di porcina sono stati precedentemente descritti dal nostro gruppo13,14. Questi includono la rigorosa evitamento di stress e dolore inutile per gli animali, possibili problemi anatomici durante la gestione delle vie aeree, e specifiche esigenze del personale19.

Inoltre, i benefici della cateterizzazione a ultrasuoni sono stati evidenziati in…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Gli autori vogliono ringraziare Dagmar Dirvonskis per un eccellente supporto tecnico.

Materials

1 M- Kaliumchlorid-Lösung 7,46% 20ml Fresenius, Kabi Deutschland GmbH potassium chloride
Arterenol 1mg/ml 25 ml Sanofi- Aventis, Seutschland GmbH norepinephrine
Atracurium Hikma 50mg/5ml Hikma Pharma GmbH, Martinsried atracurium
BD Discardit II Spritze 2,5,10,20 ml Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain syringe
BD Luer Connecta Becton Dickinson Infusion Therapy AB Helsingborg, Schweden 3-way-stopcock
BD Microlance 3 20 G Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain canula
CorPatch Easy Electrodes CorPuls, Kaufering, Germany defibrillator electrodes
Corpuls 3 Corpuls, Kaufering, Germany defibrillator
Datex Ohmeda S5 GE Healthcare Finland Oy, Helsinki, Finland hemodynamic monitor
Engström Carestation GE Heathcare, Madison USA ventilator
Fentanyl-Janssen 0,05mg/ml Janssen-Cilag GmbH, Neuss fentanyl
Führungsstab, Durchmesser 4.3 Rüsch endotracheal tube introducer
Incetomat-line 150 cm Fresenius, Kabi Deutschland GmbH perfusorline
Ketamin-Hameln 50mg/ml Hameln Pharmaceuticals GmbH ketamine
laryngoscope Rüsch laryngoscope
logicath 7 Fr 3-lumen 30cm lang Smith- Medical Deutschland GmbH central venous catheter
LUCAS-2 Physio-Control/Stryker, Redmond, WA, USA chest compression device
Masimo Radical 7 Masimo Corporation Irvine, Ca 92618 USA periphereal oxygen saturation
Neofox Oxygen sensor 300 micron fiber Ocean optics Largo, FL USA ultrafast pO2-measurements
Ölsäure reinst Ph. Eur NF C18H34O2 M0282,47g/mol Dichte 0,9 Applichem GmbH Darmstadt, Deutschland oleic acid
Original Perfusor syringe 50ml Luer Lock B.Braun Melsungen AG, Germany perfusorsyringe
Osypka pace, 110 cm Osypka Medical GmbH, Rheinfelden-Herten, Germany Pacing/fibrillation catheter
PA-Katheter Swan Ganz 7,5 Fr 110cm Edwards Lifesciences LLC, Irvine CA, USA PAC
Percutaneous sheath introducer set 8,5 und 9 Fr, 10 cm with integral haemostasis valve/sideport Arrow international inc. Reading, PA, USA introducer sheath
Perfusor FM Braun B.Braun Melsungen AG, Germany syringe pump
Propofol 2% 20mg/ml (50ml flasks) Fresenius, Kabi Deutschland GmbH propofol
Radifocus Introducer II, 5-8 Fr Terumo Corporation Tokio, Japan introducer sheath
Rüschelit Super Safety Clear >ID 6/ 6,5 /7,0 mm Teleflex Medical Sdn. Bhd, Malaysia endotracheal tube
Seldinger Nadel mit Fixierflügel Smith- Medical Deutschland GmbH seldinger canula
Sonosite Micromaxx Ultrasoundsystem Sonosite Bothell, WA, USA ultrasound
Stainless Macintosh Größe 4 Welsch Allyn69604 blade for laryngoscope
Stresnil 40mg/ml Lilly Deutschland GmbH, Abteilung Elanco Animal Health azaperone
Vasofix Safety 22G-16G B.Braun Melsungen AG, Germany venous catheter
Voltcraft Model 8202 Voltcraft, Hirschau, Germany oscilloscope/function generator

References

  1. Grasner, J. T., et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 105, 188-195 (2016).
  2. Raffee, L. A., et al. Incidence, Characteristics, and Survival Trend of Cardiopulmonary Resuscitation Following In-hospital Compared to Out-of-hospital Cardiac Arrest in Northern Jordan. Indian Journal of Critical Care Medicine. 21 (7), 436-441 (2017).
  3. Brooks, S. C., et al. Part 6: Alternative Techniques and Ancillary Devices for Cardiopulmonary Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S436-S443 (2015).
  4. Callaway, C. W., et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 132 (16 Suppl 1), S84-S145 (2015).
  5. Sandroni, C., Nolan, J. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiology. 77 (2), 220-226 (2011).
  6. Tanaka, H., et al. Modifiable Factors Associated With Survival After Out-of-Hospital Cardiac Arrest in the Pan-Asian Resuscitation Outcomes Study. Annals of Emergency Medicine. , (2017).
  7. Kleinman, M. E., et al. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S414-S435 (2015).
  8. Link, M. S., et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 132 (18 Suppl 2), S444-S464 (2015).
  9. Olasveengen, T. M., et al. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Circulation. 136 (23), e424-e440 (2017).
  10. Rubulotta, F., Rubulotta, G. Cardiopulmonary resuscitation and ethics. Revista Brasileira de Terapia Intensiva. 25 (4), 265-269 (2013).
  11. McInnes, A. D., et al. The first quantitative report of ventilation rate during in-hospital resuscitation of older children and adolescents. Resuscitation. 82 (8), 1025-1029 (2011).
  12. Maertens, V. L., et al. Patients with cardiac arrest are ventilated two times faster than guidelines recommend: an observational prehospital study using tracheal pressure measurement. Resuscitation. 84 (7), 921-926 (2013).
  13. Ziebart, A., et al. Standardized Hemorrhagic Shock Induction Guided by Cerebral Oximetry and Extended Hemodynamic Monitoring in Pigs. Journal of Visualized Experiments. (147), (2019).
  14. Kamuf, J., et al. Oleic Acid-Injection in Pigs As a Model for Acute Respiratory Distress Syndrome. Journal of Visualized Experiments. (140), (2018).
  15. Weiner, M. M., Geldard, P., Mittnacht, A. J. Ultrasound-guided vascular access: a comprehensive review. Journal of Cardiothoracic and Vascular Anesthesiology. 27 (2), 345-360 (2013).
  16. Mayer, J., Suttner, S. Cardiac output derived from arterial pressure waveform. Current Opinions in Anaesthesiology. 22 (6), 804-808 (2009).
  17. Hartmann, E. K., et al. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation. Acta Anaesthesiologica Scandanivica. 58 (8), 1032-1039 (2014).
  18. Ruemmler, R., et al. Ultra-low tidal volume ventilation-A novel and effective ventilation strategy during experimental cardiopulmonary resuscitation. Resuscitation. 132, 56-62 (2018).
  19. Wani, T. M., et al. Upper airway in infants-a computed tomography-based analysis. Paediatric Anaesthesia. 27 (5), 501-505 (2017).
  20. Tuna Katircibasi, M., et al. Comparison of Ultrasound Guidance and Conventional Method for Common Femoral Artery Cannulation: A Prospective Study of 939 Patients. Acta Cardiol Sin. 34 (5), 394-398 (2018).
  21. Hartmann, E. K., et al. Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Medicine. 39 (7), 1313-1317 (2013).
  22. Hartmann, E. K., et al. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiol Scand. 57 (3), 334-341 (2013).
  23. Ziebart, A., et al. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. Respiratory Research. 15, 101 (2014).
  24. Tan, D., et al. Duration of cardiac arrest requires different ventilation volumes during cardiopulmonary resuscitation in a pig model. Journal of Clinical Monitoring and Computing. , (2019).
  25. Kill, C., et al. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model. Critical Care Medicine. 42 (2), e89-e95 (2014).
  26. Speer, T., et al. Mechanical Ventilation During Resuscitation: How Manual Chest Compressions Affect a Ventilator’s Function. Advances in Therapy. 34 (10), 2333-2344 (2017).
  27. Kill, C., et al. Chest Compression Synchronized Ventilation versus Intermitted Positive Pressure Ventilation during Cardiopulmonary Resuscitation in a Pig Model. PLoS ONE. 10 (5), e0127759 (2015).
  28. Newell, C., Grier, S., Soar, J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Critical Care. 22 (1), 190 (2018).
check_url/kr/60707?article_type=t

Play Video

Cite This Article
Ruemmler, R., Ziebart, A., Garcia-Bardon, A., Kamuf, J., Hartmann, E. K. Standardized Model of Ventricular Fibrillation and Advanced Cardiac Life Support in Swine. J. Vis. Exp. (155), e60707, doi:10.3791/60707 (2020).

View Video