Summary

阳极化参数对薄膜晶体管氧化铝介电层的影响

Published: May 24, 2020
doi:

Summary

氧化锌薄膜晶体管(TTs)氧化铝介电层生长的阳极化参数各不相同,以确定对电气参数响应的影响。方差分析 (ANOVA) 应用于 Plackett-Burman 实验设计 (DOE),以确定导致器件性能优化的制造条件。

Abstract

氧化铝(Al2O3)是一种成本低、易于加工、高电常绝缘材料,特别适用于薄膜晶体管(TT)的介电层。与需要相对较高温度(高于300°C)(如水燃烧或喷热解)等复杂工艺相比,金属铝膜阳极化产生的氧化铝层的生长非常有利。然而,晶体管的电性能高度依赖于半导体/电介质接口存在的缺陷和局部状态,这些缺陷和局部状态受到阳极化介电层制造参数的强烈影响。为了确定多个制造参数如何影响器件性能而不执行所有可能的因素组合,我们使用基于 Plackett-Burman 实验设计 (DOE) 的减因法分析。选择此 DOE 仅允许使用 12 个因子组合(而不是所有 256 种可能性)来获得优化的设备性能。通过将方差分析 (ANOVA) 应用于获得的结果,可以按对设备响应(如 TFT 移动性)的影响对因子进行排名。

Introduction

灵活、印刷和大面积的电子产品代表着一个新兴市场,预计在未来几年将吸引数十亿美元的投资。为了满足新一代智能手机、平板显示器和物联网 (IoT) 设备的硬件要求,对轻巧、灵活且具有可见光谱光透射的材料有着巨大的需求,同时不牺牲速度和高性能。关键是要找到非晶硅(a-Si)的替代品,作为大多数当前有源矩阵显示器 (AMD) 驱动器电路中使用的薄膜晶体管 (TT) 的活性材料。a-Si 与灵活透明的基板的兼容性较低,对大面积加工具有限制,并且载波移动性约为 1 厘米2ΜV-1μs-1,无法满足下一代显示器的分辨率和刷新率需求。半导体金属氧化物(SMO)如氧化锌(ZnO)1、2、3、氧化,31,2(IZO)4、5和氧化锌4,5(IGZO)6、7是取代A-Si作为6,7TTF活性层的好选择,因为它们在可见光谱中高度透明,与柔性基材和大面积沉积相容,可实现高达80cm-V的动员性。2-1此外,SM可采用多种方法处理:射频溅射6、脉冲激光沉积(PLD)8、化学气相沉积(CVD)9、原子层沉积(ALD)10、自旋涂层1011、喷墨印刷12和喷热解13。89

然而,除了控制内在缺陷、空气/紫外线刺激不稳定以及半导体/介电接口局部状态的形成等挑战外,仍需要克服,以便能够大规模制造包含基于SMO的TT的电路。在高性能TT的所需特性中,可以提到功耗低、工作电压低、栅极漏电流低、阈值电压稳定性和宽带频率运行,这些特性极其依赖于栅极介质(以及半导体/绝缘体接口)。从这个意义上说,高电介质材料14、15、1615,16特别有趣,因为它们使用相对薄的薄膜提供单位面积的电容值大,漏电流低。14氧化铝(Al2O3)是TFT介电层的一种有前途的材料,因为它具有高介电常数(从8至12),高介电强度,高电阻率,高热稳定性,可以通过几种不同的沉积/生长技术15,17,18,19,20,21作为极其薄和均匀的薄膜进行加工。15,17,18,19,20,21此外,铝是地壳中第三最丰富的元素,这意味着与用于产生高k电介质的其他元素相比,铝很容易获得,而且价格相对便宜。

虽然 Al2O3薄(100 nm 以下)薄膜的沉积/生长可以通过射频磁控喷溅等技术成功实现, 化学气相沉积(CVD),原子层沉积(ALD),由薄金属Al层17、18、21、22、23、24、25、26的阳极化生长,由于其简单、低成本、低温和纳米尺度的薄膜厚度控制,对柔性电子器件特别感兴趣。17,18,21,22,23,24,25,26此外,阳极氧化在卷对卷 (R2R) 加工方面具有巨大潜力,这很容易适应工业层面已经使用的加工技术,从而能够快速进行制造升级。

Al2O3金属 Al 阳极化增长可以通过以下方程描述

2Al = 3 / 2 02 = Al2O3 (1)

2Al = 3H2O = Al2O3 + 3H2 (2)

其中氧气由电解质溶液中的溶解氧或薄膜表面的吸附分子提供,而水分子则从电解质溶液中迅速获得。阳极化膜粗糙度(由于半导体/电介质接口的载波散射影响TFT移动性)和半导体/电介质接口的局部状态密度(影响TFT阈值电压和电滞)在很大程度上取决于阳极化过程参数,仅举几例:电解质24、27,27的含水量、温度和pH值。与 Al 层沉积相关的其他因素(如蒸发率和金属厚度)或阳极化后过程(如退火)也会影响预制 TT 的电气性能。通过单独改变每个因子,同时保持所有其他因素不变,可以研究这些多重因素对响应参数的影响,这是一项极其耗时且效率低下的任务。另一方面,实验设计(DOE)是基于多个参数同时变化的统计方法,它允许使用相对减少的实验28数量来识别系统/设备性能响应中最重要的因素。

最近,我们使用基于Plackett-Burman29 DOE的多变量分析来分析Al2O3阳极化参数对溅射ZnOTT18性能的影响。结果用于查找几个不同响应参数的最显著因素,并应用于器件性能的优化,仅改变与介电层阳极化过程相关的参数。

目前的工作介绍了使用阳极化 Al2O3薄膜作为门介电的制造 TT 的整个协议,以及使用 Plackett-Burman DOE 研究多个阳极化参数对器件电气性能影响的详细说明。通过对方差(ANOVA)的分析与实验结果分析,确定对TFT响应参数(如载波移动性)的影响的重要性。

Protocol

本工作中描述的协议分为:一) 制备氧化电解溶液,用于阳极化;ii) 基板清洗和制备;iii) 阳极化过程;iv) TFT 有源层和排水/源电极的沉积;v) TFT 电气特性和分析以及 ANOVA 的应用,以确定制造因素在 TFT 移动性中的重要性。 1. 制备阳极氧化电解溶液 在洁净室或层压流柜内执行协议的所有程序,以避免样品制备过程中的灰尘或污染物。 制备不同水/乙二醇体积?…

Representative Results

八种不同的氧化铝层制造参数作为我们用来分析TFT性能影响的制造因素。这些因素在表 1中枚举,其中给出了两级因子 DOE 的相应”低”(-1)和”高”(+1)值。 为简单起见,每个制造因子分别由大写字母(A、B、C 等)和相应的”低”或”高”级别命名,分别表示 -1 和 +1。Placket-Burman DOE 矩阵考虑了两个级别中变化的 8 个因素,结果进行了 12 次实验运行,并结合表 2</s…

Discussion

用于获得介电的阳极化过程对所制造的TT的性能有强烈影响,保持所有几何参数和活性的制造参数不变。对于 TFT 移动性(TFT 最重要的性能参数之一)而言,通过更改表 I 给出的范围中的制造因子,它可以变化超过 2 个数量级。因此,在制造包含阳极化 Al2O3栅极电的装置时,仔细控制阳极化参数非常重要。半导体/电介质层因电荷/偶极性而出现局部状态是器件性能变化的最重要原?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认圣保罗研究基金会和巴西FAPESP的资助(19/05620-3,19/08019-9,19/01671-2,16/03484-7和14/13904-8)和皇家工程学院牛顿研究合作计划牛顿基金。作者还感谢B.F.D.B.布拉加、J.B.坎图里亚、利马G.R.和利马·索布林霍和马塞洛·德卡瓦略·博尔巴教授小组提供拍摄设备的技术支持。

Materials

Acetone LabSynth A1017 ACS reagent grade
Aluminum (Al) Wire Evaporation Kurt J. Lesker Company EVMAL40060 1.5 mm (0.060") Dia.; 1lb; 99.99%
Ammonium hydroxide solution Sigma Aldrich 338818 ACS reagent, 28.0-30.0% NH3 basis
Chemoface – Software to set a design of experiment (DOE) Federal University of Lavras (UFLA), Brazil Free software developed by Federal University of Lavras (UFLA), Brazil – http://www.ufla.br/chemoface/
Cleaning detergent Sigma Aldrich Alconox Alkaline detergent for substrate cleaning
Ethylene glycol Sigma Aldrich 102466 ReagentPlus, ≥99%
Isopropanol LabSynth A1078 ACS reagent grade
Glass substrates Sigma Aldrich CLS294775X50 Corning microscope slides, plain
L-(+)-Tartaric acid Sigma Aldrich T109 ≥99.5%
Mechanical shadow mask for deposition of the sputtered ZnO active layer Lasertools, Brazil custom mask 10 mm x 10 mm square.
Mechanical shadow mask for TFT gate electrode Lasertools, Brazil custom mask 25 mm long stripe, 3 mm wide.
Mechanical shadow mask for TFT source/drain electrodes Lasertools, Brazil custom mask 100 µm stripes, separated by 100 µm gap, overlapping of 5 mm
Plasma cleaner MTI PDC-32G Campact plasma cleaner with vacuum pump
Sputter coating system HHV Auto 500 RF sputtering system with thickness and deposition rate control
Stiring plate Sun Valley MS300 Stiring plate with heating control
Thermal evaporator HHV Auto 306 it has a high precision sensor for measure the thickness and rate of deposition of thin films
Two-channel source-measuring unit Keithley 2410 Keithley model 2410 or similar/for anodization process
Two-channel source-measuring unit Keithley 2612B Dual channel source-measure unit (SMU) for TFT measurements
Ultrasonic bath Soni-tech Soni-top 402A Ultrasonic bath with heating control
Zinc Oxide (ZnO) Sputtering Targets Kurt J. Lesker Company EJTZNOX304A3 3.0" Dia. x 0.250" Thick; 99.9%

References

  1. Fortunato, E. M. C., et al. Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Advanced Materials. 17 (5), 590-594 (2005).
  2. Fortunato, E. M. C., et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters. 85 (13), 2541-2543 (2004).
  3. Nomura, K., et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science. 300 (5623), 1269-1272 (2003).
  4. Noviyana, I., et al. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide. Materials. 10 (7), (2017).
  5. Nomura, K., et al. Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Japanese Journal of Applied Physics. 45 (5), 4303-4308 (2006).
  6. Kamiya, T., Nomura, K., Hosono, H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Science and Technology of Advanced Materials. 11 (4), 044305 (2010).
  7. Lin, C. I., Fang, Y. K., Chang, W. C. The IGZO fully transparent oxide thin film transistor on glass substrate. International Journal of Nanotechnology. 12, 3 (2015).
  8. Craciun, V., et al. Optical properties of amorphous indium zinc oxide thin films synthesized by pulsed laser deposition. Applied Surface Science. 306, 52-55 (2014).
  9. Suh, S., Hoffman, D. M. A new metal-organic precursor for the low-temperature atmospheric pressure chemical vapor deposition of zinc oxide. Journal of Materials Science Letters. 8, 789-791 (1999).
  10. Lin, Y. -. Y., Hsu, C. -. C., Tseng, M. -. H., Shyue, J. -. J., Tsai, F. -. Y. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. ACS Applied Materials & Interfaces. 7 (40), 22610-22617 (2015).
  11. Walker, D. E., et al. High mobility indium zinc oxide thin film field-effect transistors by semiconductor layer engineering. ACS Applied Materials & Interfaces. 4 (12), 6835-6841 (2012).
  12. Meyers, S. T., et al. Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs. Journal of the American Chemical Society. 130 (51), 17603-17609 (2008).
  13. Krunks, M., Mellikov, E. Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films. 270 (1-2), 33-36 (1995).
  14. Adamopoulos, G., Thomas, S., Bradley, D. D. C., McLachlan, M. A., Anthopoulos, T. D. Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air. Applied Physics Letters. 98 (12), 123503 (2011).
  15. Branquinho, R., et al. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. ACS Applied Materials and Interfaces. 6 (22), 19592-19599 (2014).
  16. Shan, F., et al. Low-Voltage High-Stability InZnO Thin-Film Transistor Using Ultra-Thin Solution-Processed ZrOx Dielectric. Journal of Display Technology. 11 (6), 541-546 (2015).
  17. Lin, Y., et al. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes. Nanoscale Research Letters. 10 (1), 495 (2015).
  18. Gomes, T. C., Kumar, D., Fugikawa-Santos, L., Alves, N., Kettle, J. Optimization of the Anodization Processing for Aluminum Oxide Gate Dielectrics in ZnO Thin Film Transistors by Multivariate Analysis. ACS Combinatorial Science. , (2019).
  19. Min, L., et al. Dual Gate Indium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide Gate Dielectrics. IEEE Transactions on Electron Devices. 61 (7), 2448-2453 (2014).
  20. Liu, A., et al. Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances. 5 (105), 86606-86613 (2015).
  21. Berndt, L. Anodization of Aluminum in Highly Viscous Phosphoric Acid. PART 2: Investigation of Anodic Oxide Formation and Dissolution Rates. International Journal of Electrochemical Science. , 9531-9550 (2018).
  22. Huang, S. Z., Hwu, J. G. Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing. IEEE Transactions on Electron Devices. 50 (7), 1658-1664 (2003).
  23. Iino, Y., et al. Organic Thin-Film Transistors on a Plastic Substrate with Anodically Oxidized High-Dielectric-Constant Insulators. Japanese Journal of Applied Physics. 42, 299-304 (2003).
  24. Hickmott, T. W. Electrolyte effects on charge, polarization, and conduction in thin anodic Al2O3 films. I. Initial charge and temperature-dependent polarization. Journal of Applied Physics. 102 (9), 093706 (2007).
  25. Majewski, L. A., Schroeder, R., Grell, M. One Volt Organic Transistor. Advanced Materials. 17 (2), 192-196 (2005).
  26. Hickmott, T. W. Temperature dependence of the dielectric response of anodized Al-Al2O3-metal capacitors. Journal of Applied Physics. 93 (6), 3461-3469 (2003).
  27. Hickmott, T. W. Interface states at the anodized Al2O3-metal interface. Journal of Applied Physics. 89 (10), 5502-5508 (2001).
  28. Anderson, M. J., Whitcomb, P. J. . DOE Simplified: Practical Tools for Effective Experimentation. , (2015).
  29. Ferreira, S. L. C., et al. Robustness evaluation in analytical methods optimized using experimental designs. Microchemical Journal. 131, 163-169 (2017).
  30. Nunes, C. A., Freitas, M. P., Pinheiro, A. C. M., Bastos, S. C. Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society. 23 (11), 2003-2010 (2012).
check_url/kr/60798?article_type=t

Play Video

Cite This Article
Gomes, T. C., Kumar, D., Alves, N., Kettle, J., Fugikawa-Santos, L. The Effect of Anodization Parameters on the Aluminum Oxide Dielectric Layer of Thin-Film Transistors. J. Vis. Exp. (159), e60798, doi:10.3791/60798 (2020).

View Video