Summary

联合非自然氨基酸合并和点击化学为疫苗目的生产的同质糖共酶

Published: December 19, 2020
doi:

Summary

遗传代码扩展用于在定义位点载体蛋白上引入一种非自然氨基酸,该氨基酸具有生物角功能组。生物激素功能进一步用于碳水化合物抗原的位点选择性耦合,以提供均匀糖基结合疫苗。

Abstract

遗传密码扩展是将非自然氨基酸 (UAAs) 引入蛋白质以改变其特性、研究或创建新蛋白质功能或获得蛋白质结合物的有力工具。停止科登抑制,特别是琥珀色的科登抑制,已成为最流行的方法,基因引入UAA在定义的位置。此方法适用于含有生物角功能组的 UAA 的载体蛋白的制备。这种反应性手柄接下来可用于专门和有效地移植合成寡糖,以提供均匀糖结合疫苗。该协议仅限于在1:1碳水化合物哈普顿/载体蛋白比中合成糖基结合物,但可与多对生物激素功能组结合。糖球菌疫苗同质性是确保完整的物理化学特性的重要标准,因此,满足越来越多的要求苛刻的药物监管机构的建议,这是经典结合策略所未达到的标准。此外,该协议使对实际结合疫苗的结构进行微调成为可能,从而产生处理结构-免疫原性关系的工具。

Introduction

糖联疫苗是可用于传染病预防治疗的疫苗库的基本要素。在包括幼儿在内的广大年龄组中,它们安全、耐受和高效。它们为脑膜炎球菌、肺炎球菌或乙型流感嗜血杆菌等细胞大 菌引起的感染提供了最佳防御。糖糖结合疫苗由纯化细菌多糖制成,形成细菌胶囊或合成寡糖,模仿这些表面表达的多糖2,这些多糖与载体蛋白共价。载体蛋白的存在对于促进针对碳水化合物抗原3所表达的抗原决定因素的保护性体液免疫反应至关重要。除了仔细选择和生产碳水化合物抗原外,已知对糖基结合疫苗的疗效有影响的特征是:载体蛋白的性质、结合化学(包括链接剂的性质和长度(如果使用),或糖/蛋白比3。显然,糖与蛋白质结合的位置以及连接点的数量与免疫原性相关。迄今为止,这两个参数几乎没有被研究,因为糖结合的制备在很大程度上仍然是经验性的。它们的合成通常依赖于使用胺或碳氧酸的功能,分别,赖氨酸或阿斯巴西/谷氨酸侧链残留物存在于载体蛋白序列。这导致的不是单一的,而是糖酸结合的异质混合物。

在蛋白质中氨基酸残留物的活性、可访问性或分布上,产生更明确的糖基结合物,这些糖结合物更可靠,可以记录糖/蛋白质连接4的影响。通过应用蛋白甘油耦合技术,可以朝着这一目标迈出一步,这种重组过程允许在细胞工厂5、6中生产受控糖结合疫苗。然而,糖基化完全发生在D/EXNYS/T sequons内的芦笋残渣(即X是20种天然氨基酸中的任何一种),不是天然存在于载体蛋白上。

站点选择性突变,特别是纳入半胱氨酸,以利用其高度和选择性的活性出现作为替代7,8。生产在序列中加入 UA 的载体蛋白可以为同质糖基结合疫苗制备提供更大的灵活性。超过100个UA已经开发,并进一步纳入各种蛋白质9,10。其中许多含有生物原虫功能,通常用于进行转化后修饰11或移植生物物理探针12或药物13,但非常适合与碳水化合物抗原进一步结合。Biotech14使用无细胞蛋白质合成15,成功的例子已经声称,但根据这一策略制备糖基结合疫苗仍等待推广。

在体内策略用于生产突变载体蛋白需要一种经过改良的转化机制,包括特定的codon、识别codon的tRNA和一种氨基酸-tRNA合成酶(aaRS),它们特别催化了在tRNA上转移的UAA(图1)16。热氨酸琥珀停止抑制是采用UAA的最广泛使用的方法之一,特别是丙丙酰-莱辛(PrK)17。后者反过来可以与azido功能化碳水化合物的哈普顿反应,以提供完全定义的,均匀的糖糖酶。本手稿中,我们描述了如何合成丙丙基-L-lysine,一种携带烷基手柄的UAA,如何在细菌中翻译过程中将其整合到目标蛋白中,最后如何通过点击化学在改性蛋白质和携带亚化物功能的哈顿之间进行结合。

Protocol

1. UAA的合成:丙丙基-莱辛(PrK) N α- Boc – propargyl -lysine的合成 18 将 500 毫克的 Boc-L-Lys-OH(2.03 mmol)溶解在烧瓶中,将水性 1 M NaOH (5 mL) 和 THF (5 mL) 混合在烧瓶中,将烧瓶与硅隔膜混合。 在冰浴中冷却烧瓶,然后在搅拌时使用微锡林格滴(2-3 分钟)滴滴添加 158 μL 的丙丙基氯仿酸(1.62 mmol)。 将反应混合物加热至室温,继续搅?…

Representative Results

在这个项目中,使用琥珀色停止抑制策略编写了一种均匀糖基结合疫苗,在定义的地点引入 UAA(图1)。肺炎球菌表面阿得辛 A 被选为载体蛋白莫伊蒂。这种蛋白质是高度保存和表达所有菌株肺炎链球菌22。它是高度免疫原性,以前用作载体的肺炎球菌疫苗配方21,23。作为概念的证…

Discussion

现场定向诱变是一个直接的策略,将特定的氨基酸纳入一种蛋白质的固定位置,这种蛋白质仍然几乎不用,目的是准备糖基结合疫苗7,8,14。基于20种天然氨基酸方法的经典突变是高效的,因为不需要修改翻译机械。半胱氨酸突变通常针对进一步探索独特的硫醇反应,无论是直接还是分两步(例如,在它修改成去氢碱中…

Disclosures

The authors have nothing to disclose.

Acknowledgements

E.C感谢卢瓦尔支付协会(Pari科学项目”BioSynProt”)的财政支持,特别是向T.V.提供博士学位。我们还感谢Robert B. Quast博士(INRA UMR0792,CNRS UMR5504,LISBP,法国图卢兹)的宝贵技术建议。

Materials

AIM (autoinductif medium) Formedium AIMLB0210 Solid powder
Boc-Lys-OH Alfa-Aesar H63859 Solid powder
BL21(DE3) Merck Novagen 69450 E. coli str. B, F ompT gal dcm lon hsdSB(rBmB) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12S)
Dialysis membrane
DNAseI
Filter 0.45 µm
L-arabinose
lysozyme
Ni-NTA resin Machery Nagel Protino Ni-NTA beads in suspension into 20% ethanol
Pall centrifugal device
pET24d-mPsaAK32TAG-ENLYFQ-HHHHHH this study same as pET24d-mPsaA-WT but with a K32TAG mutation in the mPsaA gene
pET24d-mPsaA-WT this study pET24d plasmide with the Wt mPsaA gene cloned between the BamHI and XhoI restriction sites with a TEV protease sequence followed by a His6 tag at the C-terminal end of mPsaA gene and carrying the Kanamycine resistance gene
pEVOL plasmid gift fromEdward Lemke EMBL (ref 19) plasmide with p15A origin, two copies of MmPylRS (one under GlnS promoter and one under pAra promoter), one copy of the tRNACUA under the ProK promoter, the chloramphenicol resistance gene
Propargyl chloroformate Sigma-Aldrich 460923 Liquid
Sonicator Thermo Fisher FB120-220

References

  1. Rappuoli, R. Glycoconjugate vaccines: Principles and mechanisms. Science Translational Medicine. 10 (456), (2018).
  2. Verez-Bencomo, V., et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science (New York, N.Y). 305 (5683), 522-525 (2004).
  3. Berti, F., Adamo, R. Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches for protein modification. Chemical Society Reviews. 47 (24), 9015-9025 (2018).
  4. Stefanetti, G., et al. Sugar-Protein Connectivity Impacts on the Immunogenicity of Site-Selective Salmonella O-Antigen Glycoconjugate Vaccines. Angewandte Chemie (International Ed. in English). 54 (45), 13198-13203 (2015).
  5. Kay, E., Cuccui, J., Wren, B. W. Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines. 4, 16 (2019).
  6. Ma, Z., Zhang, H., Wang, P. G., Liu, X. W., Chen, M. Peptide adjacent to glycosylation sites impacts immunogenicity of glycoconjugate vaccine. Oncotarget. 9 (1), 75-82 (2018).
  7. Grayson, E. J., Bernardes, G. J. L., Chalker, J. M., Boutureira, O., Koeppe, J. R., Davis, B. G. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates. Angewandte Chemie (International Ed. in English). 50 (18), 4127-4132 (2011).
  8. Pillot, A., et al. Site-Specific Conjugation for Fully Controlled Glycoconjugate Vaccine Preparation. Frontiers in Chemistry. , (2019).
  9. Neumann-Staubitz, P., Neumann, H. The use of unnatural amino acids to study and engineer protein function. Current Opinion in Structural Biology. 38, 119-128 (2016).
  10. Dumas, A., Lercher, L., Spicer, C. D., Davis, B. G. Designing logical codon reassignment – Expanding the chemistry in biology. Chemical Science. 6 (1), 50-69 (2015).
  11. Chen, H., Venkat, S., McGuire, P., Gan, Q., Fan, C. Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules (Basel, Switzerland). 23 (7), (2018).
  12. Adumeau, P., Sharma, S. K., Brent, C., Zeglis, B. M. Site-Specifically Labeled Immunoconjugates for Molecular Imaging–Part 2: Peptide Tags and Unnatural Amino Acids. Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging. 18 (2), 153-165 (2016).
  13. Kularatne, S. A., et al. A CXCR4-targeted site-specific antibody-drug conjugate. Angewandte Chemie (International Ed. in English). 53 (44), 11863-11867 (2014).
  14. . Patent US20180333484 Polypeptide-Antigen Conjugates with Non-Natural Amino Acids Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=US233548973&recNum=65&docAn=15859251&queryString=(GBS) (2018)
  15. Quast, R. B., Mrusek, D., Hoffmeister, C., Sonnabend, A., Kubick, S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS letters. 589 (15), 1703-1712 (2015).
  16. Wang, L. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts. Accounts of Chemical Research. 50 (11), 2767-2775 (2017).
  17. Brabham, R., Fascione, M. A. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications. Chembiochem: A European Journal of Chemical Biology. 18 (20), 1973-1983 (2017).
  18. . Genetic Encoding of a Non-Canonical Amino Acid for the Generation of Antibody-Drug Conjugates Through a Fast Bioorthogonal Reaction Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Genetic+Encoding+of+a+Non-Canonical+Amino+Acid+for+the+Generation+of+Antibody-Drug+Conjugates+Through+a+Fast+Bioorthogonal+Reaction (2019)
  19. Young, T. S., Ahmad, I., Yin, J. A., Schultz, P. G. An enhanced system for unnatural amino acid mutagenesis in E. coli. Journal of Molecular Biology. 395 (2), 361-374 (2010).
  20. Presolski, S. I., Hong, V. P., Finn, M. G. Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Current Protocols in Chemical Biology. 3 (4), 153-162 (2011).
  21. Prasanna, M., et al. Semisynthetic glycoconjugate based on dual role protein/PsaA as a pneumococcal vaccine. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences. 129, 31-41 (2019).
  22. Morrison, K. E., et al. Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. Journal of Clinical Microbiology. 38 (1), 434-437 (2000).
  23. Lin, H., Lin, Z., Meng, C., Huang, J., Guo, Y. Preparation and immunogenicity of capsular polysaccharide-surface adhesin A (PsaA) conjugate of Streptococcuspneumoniae. Immunobiology. 215 (7), 545-550 (2010).
  24. Safari, D., et al. Identification of the smallest structure capable of evoking opsonophagocytic antibodies against Streptococcus pneumoniae type 14. Infection and Immunity. 76 (10), 4615-4623 (2008).
  25. Wang, Q., Parrish, A. R., Wang, L. Expanding the genetic code for biological studies. Chemistry & Biology. 16 (3), 323-336 (2009).
  26. Lawrence, M. C., Pilling, P. A., Epa, V. C., Berry, A. M., Ogunniyi, A. D., Paton, J. C. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure (London, England: 1993). 6 (12), 1553-1561 (1998).
  27. Wright, T. H., Davis, B. G. Post-translational mutagenesis for installation of natural and unnatural amino acid side chains into recombinant proteins. Nature Protocols. 12 (10), 2243-2250 (2017).
  28. Dadová, J., Galan, S. R., Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Current Opinion in Chemical Biology. 46, 71-81 (2018).
  29. Worst, E. G., et al. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System. Journal of Visualized Experiments. (114), (2016).
  30. Carboni, F., et al. GBS type III oligosaccharides containing a minimal protective epitope can be turned into effective vaccines by multivalent presentation. The Journal of Infectious Diseases. , (2019).
check_url/kr/60821?article_type=t

Play Video

Cite This Article
Violo, T., Dussouy, C., Tellier, C., Grandjean, C., Camberlein, E. Homogeneous Glycoconjugate Produced by Combined Unnatural Amino Acid Incorporation and Click-Chemistry for Vaccine Purposes. J. Vis. Exp. (166), e60821, doi:10.3791/60821 (2020).

View Video