Summary

使用滑动运动蛋白运动度测定法制造多组分脂质纳米管网络

Published: July 26, 2021
doi:

Summary

该协议描述了使用滑动运动蛋白运动与巨型单层脂质囊泡一起制造脂质纳米管网络的过程。

Abstract

脂质纳米管(LNT)网络代表了一种体外模型系统,用于研究分子转运和脂质生物物理学,与真核细胞中发现的无处不在的脂质小管相关。然而,体内LNT是高度非平衡的结构,需要组装,维护和重组化学能和分子马达。此外,体内LNT的组成是复杂的,包括多种不同的脂质物质。挤出LNT的典型方法是时间和劳动密集型的,它们需要光学镊子,微珠和微量移液器从巨大的脂质囊泡中强行拉出纳米管。这里介绍的是滑动运动性测定(GMA)的方案,其中使用运动蛋白驱动的微管运动从巨大的单层囊泡(GUV)中快速产生大规模的LNT网络。使用这种方法,LNT网络由各种模仿生物LNT复杂性的脂质制剂形成,使其在脂质生物物理学和膜相关转运的体外研究中越来越有用。此外,该方法能够使用常用的实验室设备在短时间内(<30分钟)可靠地产生LNT网络。LNT网络特征(如长度、宽度和脂质分区)也可通过改变用于制造网络的GUV的脂质组成来调整。

Introduction

脂质纳米管(LNT)网络的制备对于非平衡脂质结构的体外检查越来越感兴趣123。细胞使用脂质小管进行蛋白质4 和核酸5 的扩散转运以及细胞间通讯67。内质网和高尔基体特别有趣,因为这些膜结合的细胞器是脂质和蛋白质合成以及这些整体生物分子在细胞质89内运输的主要位置。这些细胞器的膜由多种脂质物质组成,包括鞘脂,胆固醇和磷脂10 ,最终有助于定义其功能。因此,为了更密切地复制和研究这些细胞器,体外LNT必须由具有日益复杂的脂质制剂11的囊泡制造。

巨型单层囊泡(GUV)广泛用于研究脂质膜行为,因为它们可以与复杂的制剂可靠地合成,包括胆固醇,磷脂酰胆碱(PC),磷脂酰乙醇胺(PE),磷脂酰丝氨酸(PS)和磷脂酰肌醇(PI)1213。这里描述的是一种使用滑动运动度测定(GMA)从具有不同脂质配方的GUV制造LNT的方法,其中LNT基于作用于GUV的驱动蛋白马达和微管细丝所进行的工作进行挤出。在该系统中,吸附在表面的驱动蛋白推动生物素化的微管,将来自ATP水解的化学能转化为有用的功(特别是从生物素化囊泡中挤出LNT)11。由此产生的LNT网络提供了一个模型平台,用于研究脂质相差异对LNT形态变化的影响。

简而言之,将驱动蛋白运动蛋白在含有酪蛋白的溶液中引入流动室,这使得电机能够吸附到腔室的玻璃表面上。接下来,含有ATP的溶液中的生物素化微管流过腔室并使其与驱动蛋白马达结合并开始运动。然后将链霉亲和素溶液引入腔室并使其与微管非共价结合。最后,将含有生物素化脂质的GUV引入腔室并与链霉亲和素包被的微管结合,然后在15-30分钟内挤出LNT以形成大规模网络。该方法使用标准实验室设备和试剂以低成本生产大型分支LNT网络11

Protocol

1. 储备微管溶液的制备 注意:在整个实验方案中应始终佩戴安全护目镜、手套和实验室外套。 准备5x BRB80缓冲液:将24.19克烟斗(哌嗪-N,N′-双[2-乙烷磺酸])和0.38克EGTA(乙二醇-双[β-氨基乙基醚]-N,N,N′,N′-四乙酸)加入1升玻璃瓶中。加入1毫升1MMgCl2 ,并用KOH将pH调节至6.9。加入去离子水,使溶液达到500 mL终体积。 准备100 mM GTP溶液储备:称取52mg …

Representative Results

LNT网络(图4)是使用所述协议制造的,该协议使用微管的驱动蛋白转运所执行的工作来挤出GUV中的LNT。简而言之,使用蔗糖溶液使用琼脂糖凝胶再水合制备了GUV,并在GPEM溶液中聚合微管并在BRB80T中稳定。接下来,将驱动蛋白电机引入流通池中,在盖玻片表面形成一层有源电机。然后引入微管并加入链霉亲和素溶液,这促进了生物素化脂质和GUV(随后引入)之间的结合。 …

Discussion

LNT网络是体外研究膜性质和生物分子(如跨膜蛋白)转运的有用工具。此外,使用复杂的脂质制剂来制造LNT网络可以进行更多生物学相关的研究。其他制备研究已经使用了1)简单的脂质制剂和多层囊泡或2)更繁琐的运动技术来制造由复杂脂质制剂组成的GUV的网络。这里描述的方法能够使用廉价的试剂和设备,从复杂的脂质制剂和GUV中有效地制备大规模LNT网络。因此,该方法提供了研究一系列生?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国能源部,基础能源科学办公室,材料科学与工程部(BES-MSE)的支持。Kinesin合成和荧光显微镜是通过综合纳米技术中心的用户项目(ZIM)进行的,该中心是为美国能源部(DOE)科学办公室运营的科学用户设施办公室。

Materials

100x/1.4 Numerical Aperture Oil Immersion Objective Olympus 1-U2B836 Olympus UPlanSApo 100x/1.40 Oil Objective Infinity Corrected, RMS Thread
Working Distance 0.12mm
3.0 ND Filter Olympus Neutral Density Filter
AMP-PNP Sigma-Aldrich A2647 (β,γ-imidoadenosine 5′-triphosphate)
ATP Sigma-Aldrich A7699 Adenosine 5'-triphosphate disodium salt hydrate BioXtra
Brightline Pinkel DA/FI/TR/Cy5/Cy7-5X-A000 filter set Semrock LED-DA/FI/TR/Cy5/Cy7-5X-A-000
BrightLine Pinkel filter set, optimized for DAPI, FITC, TRITC, Cy5 & Cy7 and other like fluorophores, illuminated with LED-based light sources
Casein Sigma-Aldrich 22090 Casein hydrolysate for microbiology
Catalase Sigma-Aldrich C9322 Catalase from Bovine Liver
Chloroform Sigma-Aldrich 288306 Chloroform anhydrous contains 0.5-1.0% ethanol as stabilizer
Cholesterol Avanti 700000P cholesterol (ovine wool, >98%) (powder)
D-Glucose Sigma-Aldrich G7021 D-(+)-Glucose powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
DOPC Avanti 850375C 1,2-Dioleoyl-sn-glycero-3-phosphocholine (in chloroform)
DOPE-Biotin Avanti 870282C 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (sodium salt)
DPPC Avanti 850355P 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (powder)
DPPE-Biotin Avanti 870285P 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (sodium salt)
DTT Sigma-Aldrich 43816 DL-Dithiothreitol solution 1 M
EGTA Sigma-Aldrich E4378 EGTA, Egtazic acid, Ethylene-bis(oxyethylenenitrilo)tetraacetic acid, Glycol ether diamine tetraacetic acid
Glucose Oxidase Sigma-Aldrich G6125 Glucose Oxidase from Aspergillus niger
Type II, ≥10,000 units/g solid (without added oxygen)
Glycerol Fisher G33 Glycerol (Certified ACS), Fisher Chemical
GTP Sigma-Aldrich G8877 Guanosine 5′-triphosphate sodium salt hydrate
IX-81 Olympus Microscope Olympus N/A IX81 Inverted Microscope from Olympus
KOH Sigma-Aldrich 1050121000 Potassium Hydroxide
Magnesium Chloride Sigma-Aldrich M1028 1.00 M magnesium chloride solution
Orca Flash 4.0 Digital Camera Hamamatsu C13440-20CU ORCA-Flash 4.0 V3 Digital CMOS camera
Oregon Green-DHPE Invitrogen O12650 Oregon Green 488 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine
Paclitaxel ThermoFisher P3456 Paclitaxel (Taxol Equivalent) – for use in research only
PIPES Sigma-Aldrich P6757 1,4-Piperazinediethanesulfonic acid, Piperazine-1,4-bis(2-ethanesulfonic acid), Piperazine-N,N′-bis(2-ethanesulfonic acid)
Texas Red-DHPE Invitrogen T1395MP Texas Red 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine,
Triethylammonium Salt
Trolox Sigma-Aldrich 238813 (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid
Tubulin, Biotin Cytoskeleton T333P Tubulin protein (biotin) porcine brain
Tubulin, Hy-Lite 488 Cytoskeleton TL488M Tubulin protein (fluorescent HiLyte 488) porcine brain
Tubulin, Unlabeled Cytoskeleton T240 Tubulin protein porcine brain

References

  1. Bouxsein, N. F., Carroll-Portillo, A., Bachand, M., Sasaki, D. Y., Bachand, G. D. A continuous network of lipid nanotubes fabricated from the gliding motility of kinesin powered microtubule filaments. Langmuir. 29 (9), 2992-2999 (2013).
  2. Paxton, W. F., Bouxsein, N. F., Henderson, I. M., Gomez, A., Bachand, G. D. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments. Nanoscale. 7 (25), 10998-11004 (2015).
  3. Leduc, C., et al. Cooperative extraction of membrane nanotubes by molecular motors. Proceedings of the National Academy of Sciences of the United States of America. 101 (49), 17096-17101 (2004).
  4. Lippincott-Schwartz, J., Roberts, T. H., Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annual Review of Cell and Developmental Biology. 16, 557-589 (2000).
  5. Belting, M., Wittrup, A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. Journal of Cell Biology. 183 (7), 1187-1191 (2008).
  6. Rustom, A., Saffrich, R., Markovic, I., Walther, P., Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science. 303 (5660), 1007-1010 (2004).
  7. Onfelt, B., Nedvetzki, S., Yanagi, K., Davis, D. M. Cutting edge: Membrane nanotubes connect immune cells. Journal of Immunology. 173 (3), 1511-1513 (2004).
  8. Sciaky, N., et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol. 139 (5), 1137-1155 (1997).
  9. Sprong, H., van der Sluijs, P., van Meer, G. How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology. 2 (7), 504-513 (2001).
  10. Keenan, T. W., Morre, D. J. Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. 생화학. 9 (1), 19-25 (1970).
  11. Imam, Z. I., Bachand, G. D. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles. Langmuir. 35 (49), 16281-16289 (2019).
  12. Wesolowska, O., Michalak, K., Maniewska, J., Hendrich, A. B. Giant unilamellar vesicles – a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochimica Polonica. 56 (1), 33-39 (2009).
  13. Momin, N., et al. Designing lipids for selective partitioning into liquid ordered membrane domains. Soft Matter. 11 (16), 3241-3250 (2015).
  14. Fygenson, D. K., Braun, E., Libchaber, A. Phase diagram of microtubules. Physical Review E. 50, 1579 (1994).
  15. Greene, A. C., Sasaki, D. Y., Bachand, G. D. Forming Giant-sized Polymersomes Using Gel-assisted Rehydration. Journal of Visualized Experiments. (111), (2016).
  16. Bachand, M., et al. Directed self-assembly of 1D microtubule nano-arrays. Royal Society of Chemistry Advances. 4 (97), 54641-54649 (2014).
check_url/kr/60899?article_type=t

Play Video

Cite This Article
Imam, Z. I., Bachand, G. D. Fabricating Multi-Component Lipid Nanotube Networks Using the Gliding Kinesin Motility Assay. J. Vis. Exp. (173), e60899, doi:10.3791/60899 (2021).

View Video