Summary

毛利精密切肝片作为肝脏生物学的Ex Vivo模型

Published: March 14, 2020
doi:

Summary

该协议为从小鼠中生产可行的精确切肝片提供了一种简单可靠的方法。前活体组织样本可在实验室组织培养条件下维持多日,为检查肝病理生物学提供了灵活的模型。

Abstract

了解肝损伤、肝纤维化和肝硬化的机制,这些机制是慢性肝病(即病毒性肝炎、非酒精性脂肪性肝病、代谢性肝病和肝癌)的基础,需要实验性操作动物模型和体外细胞培养物。这两种技术都有局限性,例如对大量动物进行体内操作的要求。然而,体外细胞培养物不再现多细胞肝环境的结构和功能。使用精密切肝片是一种技术,其中保持一致的可行的小鼠肝脏切片在实验室组织培养进行实验操作。该技术占据了动物研究和体外细胞培养方法之间的实验空白。提出的协议描述了一种从小鼠身上分离和培养精确切肝片的简单而可靠的方法。作为该技术的应用,前活体肝切片用胆汁酸进行治疗,以模拟胆静肝损伤,并最终评估肝纤维成因的机制。

Introduction

大多数慢性肝病(即病毒性肝炎、非酒精性性性性性性肝炎、胆汁性肝病和肝癌)的发病机制涉及多种不同肝细胞类型之间的复杂相互作用,这些细胞类型驱动炎症、纤维生成和癌症发展11、2。2为了了解这些慢性肝基疾病背后的分子机制,必须研究多种肝细胞类型之间的相互作用。虽然多个肝细胞系(以及最近,器官)可以在体外培养,但这些模型不能准确模拟肝微环境3的复杂结构、功能和细胞多样性。此外,培养的肝细胞(特别是转化的细胞系)可能偏离其原始来源生物学。动物模型被实验性地用于研究多种肝细胞类型之间的相互作用。然而,由于肝外器官(例如,在测试潜在治疗药物时),实验操作的范围可能会显著缩小。

在组织培养中使用精密切肝片(PCLS)是首次用于药物代谢和毒性研究的实验技术,它涉及切割可行的超薄(约100~250 μm厚)肝片。这允许直接实验操作肝组织前活体4。该技术填补了体内动物研究与体外细胞培养方法之间的实验差距,克服了两种方法的许多缺点(即,对整个动物可进行的实验范围的实际限制,以及利用体外细胞培养方法丧失结构/功能和细胞多样性)。

此外,与整个动物研究相比,PCLS大大提高了实验能力。由于一只小鼠可以产生超过48个肝切片,这也方便了使用来自同一肝脏的控制和治疗组。此外,该技术将肝脏组织与其他器官系统物理分离;因此,在测试外源性刺激的效果时,它消除了整个动物中可能发生的潜在非目标效应。

在此协议中,PCLS 使用带有横向振动刀片的振动器生成。其他研究已经成功地使用了克鲁姆迪克组织切片机,如奥林加和舒潘5所述。在振动器中,刀片的横向振动可防止剪切应力引起的超薄组织的撕裂,因为刀片被推入组织。振动片和克鲁姆迪克组织切片器都能有效工作,无需对肝脏组织进行结构嵌入,从而简化切片程序。该技术还可用于从患病肝脏创建PCLS,包括那些从小鼠模型纤维化/肝硬化6和肝硬化7。

除了展示PCLS的制备和组织培养所需的技术外,本报告还通过测量腺苷三磷酸(ATP)水平并检查组织组织组织学来评估坏死和纤维化,来检查这些前活体组织的生存能力。作为一项具有代表性的实验程序,PCLS以三种不同的胆汁酸(糖胆酸、黄骨酸和胆酸)的病理生理浓度进行治疗,以模拟胆静肝损伤。在胆汁性肝损伤的情况下,特别是胆碱酸在囊性纤维化相关肝病8的儿童血清和胆汁中都明显增加。

肝祖细胞也接受了在体外用陶罗基酸治疗,以模拟患者观察到的高灰胆酸水平,这种治疗导致肝祖细胞对胆小(胆碱)表型9的增殖和分化增加。随后,PCLS在体内处理,其陶罗乔酸水平升高,并观察到胆碱基标记的增加。这支持体外观察,在小儿囊性纤维化相关肝病9中,陶罗基酸驱动胆汁增殖和/或分化。

Protocol

所有动物实验均根据澳大利亚关于为科学目的护理和使用动物的法典进行,经该研究所动物伦理委员会批准。雄性C57BL/6小鼠(15-20周大)来自澳大利亚西澳大利亚州动物资源中心。 注:所有与样品接触的解决方案、介质、仪器、硬件和管材都必须用70%乙醇溶液消毒或彻底消毒,并使用无菌技术进行处理,以尽量减少培养污染的风险。 1. 振动器的设置 <ol…

Representative Results

为了确定PCLS随时间的细胞可行性,测量了组织ATP水平。ATP 水平通常与可行性成正比。PCLS(面积约15 mm2区域)在正常威廉的E介质中培养,具有10%的FBS,然后在特定的时间点,肝切片从组织培养中去除,并同质化,测量ATP和蛋白质(用于正常化)浓度(材料表)。Figure 1A对于这样的…

Discussion

该议定书演示了鼠PCLS分离和组织培养的应用,这些程序旨在评估生存能力和效用,以及利用生化测定、组织学和qPCR检查肝病理学外源性中介的影响。PCLS组织培养在啮齿动物和人类的实验效用已在各种应用中得到证明,包括微RNA15/RNA9/蛋白质表达16、代谢17、病毒感染动力学10、18、18感染信号<sup class=…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了澳大利亚国家卫生和医学研究委员会(NHMRC)的研究资助(赠款号) 的支持。APP1048740 和 APP1142394 到 G.A.R. ;APP1160323 到 J.E.E.T., J.K.O., G.A.R.).A. Ramm 基金由澳大利亚 NHMRC 的高级研究研究奖学金提供支持(赠款号APP1061332)。曼努埃尔·费尔南德斯-罗霍得到西班牙马德里的TALENTO方案(T1-BIO-1854)的支持。

Materials

10 cm Petri Dish GREINER 664160 Sterile Dish
12 Well Tissue Culture Plate Flat Bottom Greiner Bio-one 665180
70% Ethanol Solution (made with AR Grade) Chem-Supply Pty Ltd EA043-20L-P Disinfection solution
Acetone Chem-Supply Pty Ltd AA008-2.5L
Cholic acid Sigma-Aldrich C1129-100G
Cyanoacrylate Super Glue Parfix, DuluxGroup (Australia) Other brands should work
Disposable Single Edge Safety Razor Blades Mixed
Dissection Board Made in-house Sterile material over polystyrene
Fetal Bovine Serum GE Healthcare Australia Pty Ltd SH30084.02
Forceps sharp point 130 mm long ThermoFisher Scientific MET2115-130
Forma Steri-Cycle CO2 Incubator ThermoFisher Scientific 371
Glutamine Life Technologies Australia Pty Ltd 25030081
Glycocholic acid hydrate Sigma-Aldrich G2878-100G
ISOLATE II RNA Mini Kit Bioline (Aust) Pty Ltd BIO-52073
Ketamine 50 ml Provet KETAI1
Krebs-Henseleit Buffer with Added Glucose 2000 mg/L Sigma-Aldrich K3753 Can also be made in house
Laminar Flow Hood Hepa air filtration
NanoDrop 2000/2000c Spectrophotometers ThermoFisher Scientific
Penicillin-Streptomycin, Liq 100 ml Life Technologies Australia Pty Ltd 15140-122
Picro Sirius Red ABCAM Australia Pty Ltd ab246832
Pipette Tips Abt 1000 µl Filter Interpath Interpath 24800
Pipette Tips Abt 10 µl Filter Interpath Interpath 24300
Pipette Tips Abt 200 µl Filter Interpath Interpath 24700
Pipette Tips Abt 20 µl Filter Interpath Interpath 24500
Precellys Homogeniser Bertin Instruments P000669-PR240-A
Protractor Generic To measure blade angle
Quantstudio 5 QPCR Fixed 384 Block Applied Biosystems/ ThermoFisher Scientific
Scalpel Blade Mixed
Scalpel Blade Holder Mixed
SensiFAST cDNA Synthesis Kit Bioline (Aust) PTY LTD
Small Paintbrush with Plastic Handle Mixed Plastic handle resists ethanol
Square-Head Foreceps Mixed
Sterile 50 ml Plastic Tubes Corning Falcon 352098
Surgical Clamps Mixed
Surgical Forceps Mixed
Surgical Pins Mixed
Surgical Scissors Mixed
Taurochoic acid Sigma-Aldrich T-4009-5G
Vibratome SYS-NVSLM1 Motorized Vibroslice World Precision Instruments SYS-NVSLM1 With thermoelectric cooling
Williams Medium E Life Technologies Australia Pty Ltd 12551032 2.0 g/l glucose
Xylazine 100 mg/mL 50 mL Provet XYLAZ4

References

  1. Sircana, A., Paschetta, E., Saba, F., Molinaro, F., Musso, G. Recent Insight into the Role of Fibrosis in Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. International Journal of Molecular Sciences. 20 (7), 1745 (2019).
  2. Kohn-Gaone, J., Gogoi-Tiwari, J., Ramm, G. A., Olynyk, J. K., Tirnitz-Parker, J. E. The role of liver progenitor cells during liver regeneration, fibrogenesis, and carcinogenesis. American Journal of Physiology-Gastrointestinal Liver Physiology. 310 (3), 143-154 (2016).
  3. Ouchi, R., et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metabolism. 30 (2), 374-384 (2019).
  4. Vickers, A. E., Fisher, R. L. Organ slices for the evaluation of human drug toxicity. Chemico-Biological Interactions. 150 (1), 87-96 (2004).
  5. Olinga, P., Schuppan, D. Precision-cut liver slices: a tool to model the liver ex vivo. Journal of Hepatology. 58 (6), 1252-1253 (2013).
  6. Paish, H. L., et al. A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision-Cut Liver Slices. Hepatology. 70 (4), 1377-1391 (2019).
  7. Prins, G. H., et al. A Pathophysiological Model of Non-Alcoholic Fatty Liver Disease Using Precision-Cut Liver Slices. Nutrients. 11 (3), 507 (2019).
  8. Ramm, G. A., et al. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology. 49 (2), 533-544 (2009).
  9. Pozniak, K. N., et al. Taurocholate Induces Biliary Differentiation of Liver Progenitor Cells Causing Hepatic Stellate Cell Chemotaxis in the Ductular Reaction: Role in Pediatric Cystic Fibrosis Liver Disease. The American Journal of Pathology. 187 (12), 2744-2757 (2017).
  10. Clouzeau-Girard, H., et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Investigation. 86 (3), 275-285 (2006).
  11. Szalowska, E., et al. Effect of oxygen concentration and selected protocol factors on viability and gene expression of mouse liver slices. Toxicology in Vitro. 27 (5), 1513-1524 (2013).
  12. Koch, A., et al. Murine precision-cut liver slices (PCLS): a new tool for studying tumor microenvironments and cell signaling ex vivo. Cell Communication and Signaling. 12, 73 (2014).
  13. Granitzny, A., et al. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound. Toxicology in Vitro. 42, 200-213 (2017).
  14. Wu, X., et al. Precision-cut human liver slice cultures as an immunological platform. Journal of Immunological Methods. 455, 71-79 (2018).
  15. Zarybnicky, T., et al. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen. International Journal of Molecular Sciences. 19 (6), 1805 (2018).
  16. van de Bovenkamp, M., et al. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicology Sciences. 85 (1), 632-638 (2005).
  17. Buettner, R., et al. Efficient analysis of hepatic glucose output and insulin action using a liver slice culture system. Hormone and Metabolic Research. 37 (3), 127-132 (2005).
  18. Lagaye, S., et al. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model. World Journal of Hepatology. 8 (21), 902-914 (2016).
  19. Gobert, G. N., Nawaratna, S. K., Harvie, M., Ramm, G. A., McManus, D. P. An ex vivo model for studying hepatic schistosomiasis and the effect of released protein from dying eggs. PLoS Neglected Tropical Diseases. 9 (5), 0003760 (2015).
  20. Jaiswal, S. K., Gupta, V. K., Ansari, M. D., Siddiqi, N. J., Sharma, B. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicology Reports. 4, 265-273 (2017).
  21. Plazar, J., Hreljac, I., Pirih, P., Filipic, M., Groothuis, G. M. Detection of xenobiotic-induced DNA damage by the comet assay applied to human and rat precision-cut liver slices. Toxicology in Vitro. 21 (6), 1134-1142 (2007).
  22. van de Bovenkamp, M., Groothuis, G. M., Meijer, D. K., Olinga, P. Precision-cut fibrotic rat liver slices as a new model to test the effects of anti-fibrotic drugs in vitro. Journal of Hepatology. 45 (5), 696-703 (2006).
  23. Guyot, C., et al. Fibrogenic cell phenotype modifications during remodelling of normal and pathological human liver in cultured slices. Liver International. 30 (10), 1529-1540 (2010).
  24. Bigaeva, E., et al. Exploring organ-specific features of fibrogenesis using murine precision-cut tissue slices. Biochim Biophys Acta – Molecular Basis Disease. 1866 (1), 165582 (2020).
  25. Kiziltas, S. Toll-like receptors in pathophysiology of liver diseases. World Journal of Hepatology. 8 (32), 1354-1369 (2016).
  26. Mencin, A., Kluwe, J., Schwabe, R. F. Toll-like receptors as targets in chronic liver diseases. Gut. 58 (5), 704-720 (2009).
  27. Finot, F., et al. Combined Stimulation with the Tumor Necrosis Factor alpha and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices. International Journal of Hepatology. 2012, 785786 (2012).
  28. Marshall, A., et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology. 128 (1), 33-42 (2005).
  29. Alpini, G., et al. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology. 34 (5), 868-876 (2001).
  30. Studer, E., et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology. 55 (1), 267-276 (2012).
check_url/kr/60992?article_type=t

Play Video

Cite This Article
Pearen, M. A., Lim, H. K., Gratte, F. D., Fernandez-Rojo, M. A., Nawaratna, S. K., Gobert, G. N., Olynyk, J. K., Tirnitz-Parker, J. E. E., Ramm, G. A. Murine Precision-Cut Liver Slices as an Ex Vivo Model of Liver Biology. J. Vis. Exp. (157), e60992, doi:10.3791/60992 (2020).

View Video