Summary

5公里跑步机跑步初始和末期下肢运动学的比较分析

Published: July 17, 2020
doi:

Summary

本研究调查了5公里跑步机运行的初始和末期之间下肢运动变量的生物力学特性。在初始阶段(0.5公里)和终点相(5公里)的跑步机上,使用三维运动采集系统收集了10名跑步者的下肢运动数据。

Abstract

跑步有益于身体健康,但也伴有许多损伤。然而,导致跑步受伤的主要因素仍然无法解释。本研究调查了长跑对下肢运动变量的影响,并比较了5公里跑步的初始(IR)和终端相(TR)之间的下肢运动差异。10名业余跑步者以10公里/小时的速度在跑步机上跑步。动态运动数据分别收集在IR(0.5公里)和TR(5公里)的阶段。本实验中记录了峰值角度、峰值角速度和运动范围。主要结果表明:在TR中,脚踝的转化率和膝盖的诱拐性有所提高;在TR的正面平面上,脚踝和膝盖的ROM比IR增加;与红外相比,在TR中发现脚踝多西反射和臀部交联的峰值角速度较大。长跑期间的这些变化可能会提供一些具体细节,以探索跑步受伤的潜在原因。

Introduction

跑步是全世界最受欢迎的运动。有大量的个人运行,这个数字每年大幅增加1。有人建议,参加包括跑步在内的定期运动可以促进健康,降低心血管疾病的风险,从而延长2、3、4,3,的寿命。尽管跑步对健康有显著益处,但跑步伤害的发病率在5、6年从25%,增加到83%。有一些与跑步相关的风险,特别是下肢,这主要集中在肌肉骨骼损伤7。大多数常见的跑步相关损伤都与骨伤、脚踝扭伤、胸椎应力性骨折和植物性筋膜炎有关。跑步损伤可能由许多因素诱发,如不正确的脚击图案,不正确的鞋选择,和其他个别的生物力学因素9。例如,用脚跟打击模式跑步可以导致更大的促进,并伴随着更大的植物压力在脚的中侧,这可能会导致更高的风险,阿喀琉斯肌腱病和疼痛10。此外,以前有报道说,膝盖内部旋转较大的跑步与11岁女选手的伊利奥比亚尔带综合征有关,尤其是在长跑时。

动力学、运动学和时空成分的参数可以提供步态生物力学的精确分析,目前被认为是临床步态分析的重要参数。较低的垂直地面反应力和较大的冲击加速度在长跑13,14被重新编码。更高的臀部偏移和较小的膝盖弯曲也被发现与疲劳的肌肉15,和增加步幅频率可能会导致减少步幅长度13,16。,16

然而,由于大多数研究测量了跑步后的生物力学变异,因此尚未对下肢在初始和末期运行阶段的生物力学特征变化进行充分分析。此外,只有少数研究使用标准的实验室技术来评估长跑对业余跑步者步态生物力学变化的影响。导致跑步受伤的主要因素尚不清楚。因此,为了揭示长跑导致下肢损伤的根本原因,本研究旨在比较业余跑步者在跑步机5公里跑步中,IR和TR阶段之间的下肢生物力学变化。

Protocol

从受试者获得书面知情同意,考试程序得到大学道德委员会的批准。所有参与者都被告知了审判的要求和过程。 1. 实验室准备 在校准过程中,关闭灯并移除其他可能反射的物体。确保正确放置八台摄像机,并清晰查看,无需反射。 打开 Vicon Nexus 1.8.5 程序,然后初始化摄像机。选择系统|本地系统|资源窗格中的 MX 摄?…

Representative Results

结果表明,在下垂平面上观察到脚踝和臀部的峰值角度没有差异。与红外相比,TR的脚踝和膝关节的峰值角度显著增加。与红外形成对比的TR中发现较大的内部臀部角。然而,TR在臀部诱拐、脚踝交行和膝关节交行方面的峰值角度比IR小(图2)。 在下垂平面中,与 TR 相比,脚踝和膝盖的 ROM 在 IR 中显著增加。在正面平面中,与红外相比,TR 中的臀部 ROM ?…

Discussion

本研究比较了长跑对业余跑步者下肢生物力学特性的影响。结果发现,脚踝扭伤和膝盖诱拐的峰值角度在5公里长跑后增加,这与先前的研究17一致。研究表明,脚踝过度的转化率和电子化速度是增加脚踝受伤风险,的重要因素。毫不奇怪,膝盖ROM增加在TR的5公里运行,因为研究表明,膝盖运动学是影响长跑15,17。,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由中国自然科学基金(81772423)、宁波大学黄麦格纳基金、中国国家重点研发项目(2018YFF0300903)主办。

Materials

14 mm Diameter Passive Retro-reflective Marker Oxford Metrics Ltd., Oxford, UK n=22
Double Adhesive Tape Oxford Metrics Ltd., Oxford, UK For fixing markers to skin
Heart Rate Garmin, HRM3-SS, China Detection of fatigue state
Motion Tracking Cameras Oxford Metrics Ltd., Oxford, UK n= 8
T-Frame Oxford Metrics Ltd., Oxford, UK
Treadmill Smart Run,China Subject run on the treadmill for all the process.
Valid Dongle Oxford Metrics Ltd., Oxford, UK Vicon Nexus 1.4.116
Vicon Datastation ADC Oxford Metrics Ltd., Oxford, UK

References

  1. Lee, D. C., et al. Running as a Key Lifestyle Medicine for Longevity. Progress in Cardiovascular Diseases. 60 (1), 45-55 (2017).
  2. Dugan, S. A., Bhat, K. P. Biomechanics and analysis of running gait. Physical Medicine & Rehabilitation Clinics of North America. 16 (3), 603-621 (2005).
  3. Hart, L. Disability and mortality among aging runners. Clinical Journal of Sport Medicine Official Journal of the Canadian Academy of Sport Medicine. 19 (4), 338 (2009).
  4. Schnohr, P., Marott, J. L., Lange, P., Jensen, G. B. Longevity in male and female joggers: the Copenhagen City Heart Study. American Journal of Epidemiology. 177 (7), 683-689 (2013).
  5. Bovens, A. M., et al. Occurrence of running injuries in adults following a supervised training program. International Journal of Sports Medicine. 10, 186-190 (1989).
  6. Blair, S. N., Kohl, H. W., Goodyear, N. N. Rates and Risks for Running and Exercise Injuries: Studies in Three Populations. Research Quarterly for Exercise & Sport. 58 (3), 221-228 (2016).
  7. Lun, V., Meeuwisse, W. H., Stergiou, P., Stefanyshyn, D. Relation between running injury and static lower limb alignment in recreational runners. British Journal of Sports Medicine. 38 (5), 576-580 (2004).
  8. Fukuchi, R. K., Fukuchi, C. A., Duarte, M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ. 5 (5), 3298 (2017).
  9. Iii, E. B. L., Sackiriyas, K. S. B., Swen, R. W. A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Physical Therapy in Sport Official Journal of the Association of Chartered Physiotherapists in Sports Medicine. 12 (4), 151-163 (2011).
  10. Dowling, G. J., et al. Dynamic foot function as a risk factor for lower limb overuse injury: a systematic review. Journal of Foot & Ankle Research. 7 (1), 53 (2014).
  11. Aderem, J., Louw, Q. A. Biomechanical risk factors associated with iliotibial band syndrome in runners: a systematic review. BMC Musculoskeletal Disorders. 16 (1), 356 (2015).
  12. Anderson, T. Biomechanics and running economy. Sports Medicine. 22 (2), 76-89 (1996).
  13. Degache, F., et al. Changes in running mechanics and spring-mass behaviour induced by a 5-hour hilly running bout. Journal of Sports Sciences. 31 (3), 299-304 (2013).
  14. Millet, G. Y., et al. Running from Paris to Beijing: biomechanical and physiological consequences. Eur J Appl Physiol. 107 (6), 731-738 (2009).
  15. Mizrahi, J., Verbitsky, O., Isakov, E., Daily, D. Effect of fatigue on leg kinematics and impact acceleration in long distance running. Human Movement Science. 19 (2), 139-151 (2000).
  16. Bisiaux, M., Moretto, P. The effects of fatigue on plantar pressure distribution in walking. Gait & Posture. 28 (4), (2008).
  17. Dierks, T. A., Davis, I. S., Hamill, J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J. Biomech. 43 (15), 2993-2998 (2010).
  18. Rolf, C. Overuse injuries of the lower extremity in runners. Scandinavian Journal of Medicine & Science in Sports. 5 (4), 181-190 (1995).
  19. Marti, B., Vader, J. P., Minder, C. E., Abelin, T. On the epidemiology of running injuries: the 1984 Bern Grand-Prix study. The American Journal of Sports Medicine. 16 (3), 285-294 (1988).
  20. Dierks, T. A., Davis, I. S., Hamill, J. The effects of running in an exerted state on lower extremity kinematics and joint timing. Journal of Biomechanics. 43 (15), 2993-2998 (2010).
  21. Noehren, B., Davis, I., Hamill, J. ASB Clinical Biomechanics Award Winner 2006: Prospective study of the biomechanical factors associated with iliotibial band syndrome. Clinical Biomechanics. 22 (9), 951-956 (2007).
  22. Noehren, B., Pohl, M. B., Sanchez, Z., Cunningham, T., Lattermann, C. Proximal and distal kinematics in female runners with patellofemoral pain. Clinical Biomechanics. 27 (4), 366-371 (2012).
  23. Souza, R. B., Powers, C. M. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. Journal of Orthopaedic & Sports Physical Therapy. 39 (1), 12-19 (2009).
  24. Ferber, R., Hreljac, A., Kendall, K. D. Suspected mechanisms in the cause of overuse running injuries: a clinical review. Sports Health. 1 (3), 242-246 (2009).
check_url/kr/61192?article_type=t

Play Video

Cite This Article
Quan, W., Wang, M., Liu, G., Fekete, G., Baker, J. S., Ren, F., Gu, Y. Comparative Analysis of Lower Limb Kinematics between the Initial and Terminal Phase of 5km Treadmill Running. J. Vis. Exp. (161), e61192, doi:10.3791/61192 (2020).

View Video