Summary

使用3D超声心动图评估左心室结构和功能

Published: October 28, 2020
doi:

Summary

在本文中,我们为通过3D超声心动图对左心室进行容量评估和斑点跟踪分析提供了分步采集和分析方案,特别关注最大化该技术可行性的实用方面。

Abstract

左心室 (LV) 的三维 (3D) 定量在诊断准确性和各种心脏疾病的精确风险分层方面提供了显著的附加值。最近,3D超声心动图在常规心脏病学实践中变得可用;然而,高质量的图像采集和后续分析具有陡峭的学习曲线。本文旨在通过提供提示和技巧以及强调潜在的陷阱来引导读者通过详细的3D协议,以促进有关LV的这一重要技术的广泛但技术上合理的使用。首先,我们展示了以最佳空间和时间分辨率获取的高质量3D数据集。然后,我们通过使用应用最广泛的内置软件之一,介绍了对LV进行详细定量的分析步骤。我们将通过测量射血分数和心肌变形(纵向和圆周应变)来量化左心室体积,球形度,质量和收缩功能。我们将讨论并提供临床示例,说明强烈建议从传统的超声心动图方法过渡到基于3D的定量的基本场景。

Introduction

评估左心室 (LV) 形态和功能是心脏病学中一般甚至更具体检查的主要目的1。广泛可用的无创经胸超声心动图(TTE)可以提供大量信息,是方便,快速且具有成本效益的评估的首选方法。

低压质量、容量和随后的射血分数的测量具有重要的诊断价值和预后价值2。给定的度量值越准确,其值就越高。与金标准心脏磁共振(CMR)成像衍生值更好的相关性是对超声心动图技术的持续追逐。通常,临床实践指南推荐双平面辛普森方法测量左心室体积和射血分数3。然而,左心室是一种三维(3D)结构,其形状通常不规则,因此,在某些临床场景中,几个断层扫描平面无疑无法准确描绘左心室形态和功能。超声波硬件和软件技术的最新进展允许实时3D成像的发展,这彻底改变了超声心动图方案。

此外,需要对壁运动异常进行定量方法,导致变形成像的兴起4。应变和应变速率参数可以通过使用标准灰度图像的斑点跟踪来计算。3D 超声心动图还可以克服二维应变评估的几个缺点5。从昂贵的科学工具,3D超声心动图开始成为日常临床实践中使用的一种强大技术,而LV的定量无疑是这一突破的第一线。

本文旨在通过提供提示和技巧以及强调潜在的陷阱来引导读者通过详细的3D协议,以促进有关LV的这一重要技术的广泛但技术上合理的使用。

Protocol

该协议遵循塞梅尔威斯大学科学与研究伦理区域和机构委员会的指导方针。本协议适用于特定供应商。尽管无论使用超声机和后处理软件,某些步骤仍然有效,但如果使用其他供应商的解决方案,则可能存在重要差异。 1. 技术要求 利用能够进行3D成像的超声心动图机。 连接具有 3D 经胸超声心动图功能的相控阵换能器。 应用超声系统的内置3导联心电图?…

Representative Results

左心室的 3D 分析在大多数患者中是可行的。病例1是一名健康的志愿者,心室容积和功能正常(图1)。病例 2(图 2)是一名 64 岁男性患者,伴有扩张型心肌病和宽 QRS 复合体(160 ms)左束支传导阻滞形态。黄金标准CMR测量值如下:舒张末期体积:243 mL,收缩末期体积:160 mL,射血分数:34%,左心室质量:163g。传统的线性超声?…

Discussion

左心室形态学和功能测量是心脏病诊断、管理和随访的基石。此外,它们是结果的强大预测因素。通常,现行实践指南建议对左心室进行基于二维超声心动图的评估。然而,3D超声心动图已被证明更准确,因为它没有关于LV形状的几何假设78。通过斑点跟踪进行变形成像是评估心肌应变不同方向的可靠方法,可以更灵敏地量化壁运动异常5<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

项目编号NVKP_16-1-2016-0017(”国家心脏计划”)已在匈牙利国家研究,发展和创新基金的支持下实施,该基金由NVKP_16资助计划资助。该研究由匈牙利创新和技术部的专题卓越计划(2020-4.1.1.-TKP2020)资助,在塞梅尔威斯大学的治疗开发和生物成像主题计划的框架内。

Materials

3V-D/4V-D/4Vc-D General Electric n.a. ultrasound probe
4D Auto LVQ General Electric n.a. software for analysis
E9/E95 General Electric n.a. ultrasound machine
EchoPac v203 General Electric n.a. software for analysis

References

  1. Guta, A. C., et al. Three-dimensional echocardiography to assess left ventricular geometry and function. Expert Review of Cardiovascular Therapy. 17 (11), 801-815 (2019).
  2. Surkova, E., et al. Current Clinical Applications of Three-Dimensional Echocardiography: When the Technique Makes the Difference. Current Cardiology Reports. 18 (11), 109 (2016).
  3. Lang, R. M., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. 28 (1), 1-39 (2015).
  4. Matyas, C., et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovascular Diabetology. 17 (1), 13 (2018).
  5. Kovacs, A., et al. Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: a three-dimensional speckle tracking study. International Journal of Cardiovascular Imaging. 30 (7), 1331-1337 (2014).
  6. Muraru, D., et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. Journal of the American Society of Echocardiography. 26 (6), 618-628 (2013).
  7. Lakatos, B. K., et al. Relationship between Cardiac Remodeling and Exercise Capacity in Elite Athletes: Incremental Value of Left Atrial Morphology and Function Assessed by Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography. 33 (1), 101-109 (2020).
  8. Muraru, D., et al. Intervendor Consistency and Accuracy of Left Ventricular Volume Measurements Using Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography. 31 (2), 158-168 (2018).
  9. Kalam, K., Otahal, P., Marwick, T. H. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 100 (21), 1673-1680 (2014).
  10. Muraru, D., et al. Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. European Journal of Echocardiography. 11 (4), 359-368 (2010).
  11. Doronina, A., et al. The Female Athlete’s Heart: Comparison of Cardiac Changes Induced by Different Types of Exercise Training Using 3D Echocardiography. BioMed Research International. 2018, 3561962 (2018).
  12. Takeuchi, M., et al. Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. Journal of the American Society of Echocardiography. 21 (9), 1001-1005 (2008).
  13. Armstrong, A. C., et al. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 5 (8), 837-848 (2012).
  14. Olah, A., et al. Characterization of the dynamic changes in left ventricular morphology and function induced by exercise training and detraining. International Journal of Cardiology. 277, 178-185 (2019).
  15. Nagy, V. K., et al. Role of Right Ventricular Global Longitudinal Strain in Predicting Early and Long-Term Mortality in Cardiac Resynchronization Therapy Patients. PLoS One. 10 (12), e0143907 (2015).
  16. Kovacs, A., Lakatos, B., Tokodi, M., Merkely, B. Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Failure Reviews. 24 (4), 511-520 (2019).
  17. Badano, L. P., et al. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. European Heart Journal – Cardiovascular Imaging. 14 (3), 285-293 (2013).
check_url/kr/61212?article_type=t

Play Video

Cite This Article
Ujvári, A., Lakatos, B. K., Tokodi, M., Fábián, A., Merkely, B., Kovács, A. Evaluation of Left Ventricular Structure and Function using 3D Echocardiography. J. Vis. Exp. (164), e61212, doi:10.3791/61212 (2020).

View Video