Summary

Kit de ferramentas vibradores táteis e plataforma de simulação de condução para pesquisa relacionada à condução

Published: December 18, 2020
doi:

Summary

Este protocolo descreve uma plataforma de simulação de condução e um kit de ferramentas vibratórias táteis para a investigação de pesquisas relacionadas à condução. Um experimento exemplar explorando a eficácia dos avisos táteis também é apresentado.

Abstract

O sistema de alerta de colisão desempenha um papel fundamental na prevenção de distrações de condução e condução sonoleira. Estudos anteriores comprovaram as vantagens dos avisos táteis na redução do tempo de resposta do freio do motorista. Ao mesmo tempo, os avisos táteis têm se mostrado eficazes na solicitação de tomada (TOR) para veículos parcialmente autônomos.

Como o desempenho dos avisos táteis pode ser otimizado é um tópico de pesquisa quente em andamento neste campo. Assim, os softwares e métodos de simulação de condução de baixo custo apresentados são introduzidos para atrair mais pesquisadores para participar da investigação. O protocolo apresentado foi dividido em cinco seções: 1) participantes, 2) configuração de software de simulação de condução, 3) preparação de simulador de direção, 4) configuração e preparação do kit de ferramentas vibrantes e 5) condução do experimento.

No estudo exemplar, os participantes usaram o kit de ferramentas vibratórias táteis e realizaram uma tarefa estabelecida de seguir o carro usando o software de simulação de condução personalizado. O veículo dianteiro freava intermitentemente, e avisos vibratórios eram emitidos sempre que o veículo dianteiro freava. Os participantes foram instruídos a responder o mais rápido possível aos freios repentinos do veículo dianteiro. A dinâmica de condução, como o tempo de resposta do freio e a taxa de resposta ao freio, foram registradas pelo software de simulação para análise de dados.

O protocolo apresentado oferece insights sobre a exploração da eficácia dos avisos táteis em diferentes locais do corpo. Além da tarefa de seguir o carro que é demonstrada no experimento exemplar, este protocolo também fornece opções para aplicar outros paradigmas aos estudos de simulação de condução, fazendo configuração simples de software sem qualquer desenvolvimento de código. No entanto, é importante notar que devido ao seu preço acessível, o software de simulação de condução e hardware introduzido aqui pode não ser capaz de competir totalmente com outros simuladores de direção comercial de alta fidelidade. No entanto, este protocolo pode funcionar como uma alternativa acessível e fácil de usar para os simuladores de condução comercial de alta fidelidade em geral.

Introduction

De acordo com os dados revelados pelo Global Health Estimates em 2016, o acidente de trânsito é a oitava causa de mortes globais, levando a 1,4 milhão de mortes em todo o mundo1. No ano de 2018, 39,2% dos acidentes de trânsito foram colisões com veículos automotores no transporte, e 7,2% foram colisões traseiras. Uma solução para aumentar a segurança dos veículos e das estradas é o desenvolvimento de um sistema avançado de assistência à condução (ADAS) para alertar os motoristas com potenciais riscos. Os dados mostraram que o ADAS pode reduzir consideravelmente a taxa de colisões traseiras, e é ainda mais eficaz quando equipado com um sistema de freio automático2. Além disso, com o desenvolvimento de veículos autônomos, será necessário menor envolvimento humano para controlar o veículo, tornando necessário um sistema de alerta de retirada (TOR) quando o veículo autônomo não se regular. O design do sistema de alerta ADAS e TOR é agora uma importante peça de tecnologia para os motoristas evitarem acidentes iminentes em poucos segundos. O experimento exemplar usou um kit de ferramentas vibratório, juntamente com uma plataforma de simulação de condução para investigar qual local geraria o melhor resultado quando um sistema de alerta vibrotátil foi usado como um potencial sistema de alerta ADAS e TOR.

Categorizados por canais perceptivos, geralmente existem três tipos de modalidades de alerta, que são visuais, auditivas e táteis. Cada modalidade de advertência tem seus próprios méritos e limitações. Quando os sistemas de alerta visual estão em uso, os motoristas podem sofrer com a sobrecarga visual3,prejudicando o desempenho de condução devido à cegueira desatenção4,5. Embora um sistema de alerta auditivo não influencie o campo visual dos motoristas, sua eficácia depende muito do ambiente, como música de fundo e outros ruídos no ambiente de condução6,7. Assim, situações que contenham outras informações auditivas externas ou ruídos significativos podem levar à surdez desatenção8,9, reduzindo a eficácia de um sistema de alerta auditivo. Em comparação, os sistemas de alerta tátil não competem com o processamento visual ou auditivo dos motoristas. Ao enviar avisos vibrotáis aos motoristas, os sistemas de alerta tátil superam as limitações dos sistemas de alerta visual e auditivo.

Estudos anteriores mostraram que os avisos táteis podem beneficiar os motoristas, encurtando o tempo de resposta do freio. Verificou-se também que os sistemas de alerta táteis produzem um resultado mais efetivo sobre o visual10,11 e auditivo12,13,14 sistemas de alerta em determinadas situações. No entanto, pesquisas limitadas se concentraram em investigar o local ideal para a colocação de um dispositivo de alerta tátil. De acordo com a hipótese do córtex sensorial15 e a hipótese de distância sensorial16,o estudo exemplar escolheu as áreas do dedo, pulso e templo como locais experimentais para a colocação de um dispositivo de alerta tátil. Com o protocolo introduzido, a frequência e o tempo de entrega de um aviso vibratório, e intervalos entre vibrações do kit de ferramentas vibratórias, podem ser configurados para atender aos requisitos experimentais. Este kit de ferramentas vibratório consistia de um chip mestre, um chip regulador de tensão, um multiplexer, um adaptador USB para Transistor-Transistor-Logic (TTL), um Transistor de Efeito de Campo metal-óxido-semicondutor (MOSFET) e um módulo Bluetooth. O número de módulos vibratórios também pode variar de acordo com as necessidades dos pesquisadores, com até quatro módulos vibrando ao mesmo tempo. Ao implementar o kit de ferramentas vibratório nos experimentos relacionados à condução, ele pode ser configurado para se adequar às configurações experimentais, bem como sincronizado com dados de desempenho de condução, revisando os códigos da simulação de condução.

Enquanto para os pesquisadores, a realização de um experimento de condução em uma plataforma virtual é mais viável do que no mundo real devido ao risco e custo envolvidos. Por exemplo, a coleta de indicadores de desempenho pode ser difícil, e é difícil controlar os fatores ambientais envolvidos quando experimentos estão sendo conduzidos no mundo real. Como resultado, muitos estudos têm usado simuladores de direção de base fixa rodando em PCs nos últimos anos como alternativa para realizar estudos de condução em estrada. Depois de aprender, desenvolver e pesquisar por mais de 11 anos na comunidade de pesquisa de condução, estabelecemos uma plataforma de simulação de condução com um carro real que consiste em um software de simulação de condução de código aberto e um kit de hardware, incluindo um volante e caixa de velocidades, três pedais, três projetores montados e três telas de projetor. Com o software de simulação de condução suportando apenas uma única tela, o protocolo apresentado usou apenas o projetor central e a tela do projetor para realizar o experimento.

Existem duas grandes vantagens de usar a plataforma de simulação de condução apresentada. Uma vantagem desta plataforma é que ela usa um software de código aberto. Usando a plataforma de código aberto fácil de usar, os pesquisadores podem personalizar o kit de ferramentas de simulação e vibração para suas necessidades de pesquisa exclusivas, fazendo uma configuração de software simples sem qualquer desenvolvimento de código . Ao revisar os códigos, os pesquisadores podem criar simulações de condução que fornecem fidelidade relativa à realidade com muitas opções disponíveis em tipos de carros, tipos de estrada, resistência ao volante, turbulência de vento lateral e longitudinal, interfaces de programa de aplicativos de eventos de tempo e freio (APIs) para sincronização de software externo e implementação dos paradigmas comportamentais, como tarefa de seguir carro e tarefa N-Back. Embora a realização de pesquisas relacionadas à condução em um simulador de direção não possa replicar totalmente a condução no mundo real, os dados coletados através de um simulador de direção são razoáveis e têm sido amplamente adotados pelos pesquisadores17,18.

Outra vantagem do simulador de direção proposto é o seu baixo custo. Como mencionado anteriormente, o software de simulação de condução introduzido é um software de código aberto que está disponível gratuitamente para os usuários. Além disso, o custo total de toda a configuração de hardware neste protocolo é menor se comparado aos simuladores típicos de direção comercial de alta fidelidade. Os números 1 a e b mostram a configuração completa de dois simuladores de direção com o custo que varia de US$ 3.000 a US$ 3.000. Em contraste, simuladores típicos de direção comercial de alta fidelidade (base fixa) geralmente custam em torno de US $ 10.000 a US $ 100.000. Com seu preço altamente acessível, este simulador de direção pode ser uma escolha popular não apenas para fins de pesquisa acadêmica, mas também para a realização de aulas de direção19 e para demonstração de tecnologias relacionadas à condução20,21.

Figure 1
Figura 1: Uma imagem dos simuladores de direção. Ambos os simuladores de direção consistiam em um volante e caixa de câmbio, três pedais e um veículo. a Uma configuração de simulador de direção de US$ 3.000 que usou uma tela LCD de 80 polegadas com uma resolução de 3840 × 2160. (b) Uma configuração de simulador de direção de US$ 3.0000 que utilizou três projetores montados e três telas de projetor com uma dimensão de 223 x 126 cm cada. As telas de projeção foram colocadas 60 cm acima do solo e 22 cm de distância da frente do veículo. Apenas o projetor central e a tela do projetor foram usados para o experimento atual. Clique aqui para ver uma versão maior desta figura.

O software de simulação de condução e o kit de ferramentas vibratórios no método proposto já foram utilizados em estudos anteriores por nossos pesquisadores22,23,24,25,26,27,28,29. Este kit de ferramentas vibratórias auto-desenvolvido seguindo o padrão ISO30 pode ser aplicado em diferentes campos31,32 ajustando a frequência e intensidade de vibração. É importante notar que uma versão mais recente do kit de ferramentas vibratória foi desenvolvida e é introduzida no protocolo a seguir. Em vez de ajustar a frequência de vibração usando um adaptador de tensão ajustável, a versão mais recente é equipada com cinco frequências de vibração diferentes e pode ser mais fácil de ajustar usando os códigos fornecidos no Arquivo de Codificação Suplementar 1. Além disso, o simulador de direção apresentado fornece aos pesquisadores uma maneira segura, barata e eficaz de investigar vários tipos de pesquisas relacionadas à condução. Assim, este protocolo é adequado para laboratórios de pesquisa que têm um orçamento limitado e têm uma forte necessidade de personalizar ambientes experimentais de condução.

Protocol

NOTA: Todos os métodos aqui descritos foram aprovados pelo Conselho de Revisão Institucional (IRB) da Universidade de Tsinghua e o consentimento informado foi obtido de todos os participantes. 1. Participantes Realize uma análise de poder para calcular o número necessário de participantes para recrutamento de acordo com o projeto experimental para alcançar o poder estatístico. Equilibrar o sexo dos participantes durante o recrutamento tanto quanto possível. <l…

Representative Results

O estudo exemplar relatado neste artigo conduziu a tarefa de seguir o carro utilizando o simulador de direção e o kit de ferramentas vibrantes, que também foi publicado anteriormente em uma revista acadêmica22. Vale ressaltar que a versão mais antiga do kit de ferramentas vibratórias foi usada na condução do estudo exemplar, enquanto uma nova versão do kit de ferramentas vibratórias foi introduzida no protocolo acima. O estudo foi um experimento de design de dentro do assunto com localiz…

Discussion

A plataforma de simulação de condução e o kit de ferramentas vibratórios imitavam razoavelmente a aplicação de potenciais dispositivos vibrotactile vestíveis na vida real, fornecendo uma técnica eficaz na investigação de pesquisas relacionadas à condução. Com o uso dessa tecnologia, um ambiente experimental seguro com alta configurabilidade e acessibilidade está agora disponível para a realização de pesquisas comparáveis à condução do mundo real.

Existem vários passos qu…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este projeto foi patrocinado pela Beijing Talents Foundation.

Materials

Logitech G29 Logitech 941-000114 Steering wheel and pedals
Projector screens The projector screen for showing the simulation enivronemnt.
Epson CB-700U Laser WUXGA Education Ultra Short Focus Interactive Projector EPSON V11H878520W The projector model for generating the display of the simlution enivronment.
The Open Racing Car Simulator (TORCS) None Driving simulation software. The original creators are Eric Espié and Christophe Guionneau, and the version used in experiment is modified by Cao, Shi.
Tactile toolkit Hao Xing Tech. None This is used to initiate warnings to the participants.
Connecting program (Python) This is used to connect the TORCS with the tactile toolkit to send the vibrating instruction.
G*power Heinrich-Heine-Universität Düsseldorf None This software is used to calculate the required number of participants.

References

  1. The top 10 causes of death. World Health Organization Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2018)
  2. . Insurance Institute for Highway Safety (IIHS) Available from: https://www.iihs.org/news/detail/gm-front-crash-prevention-systems-cut-police-reported-crashes (2018)
  3. Spence, C., Ho, C. Tactile and multisensory spatial warning signals for drivers. IEEE Transactions on Haptics. 1 (2), 121-129 (2008).
  4. Simons, D. J., Ambinder, M. S. Change blindness: theory and consequences. Current Directions in Psychological Science. 14 (1), 44-48 (2005).
  5. Mack, A., Rock, I. . Inattentional blindness. , (1998).
  6. Wilkins, P. A., Acton, W. I. Noise and accidents – A review. The Annals of Occupational Hygiene. 25 (3), 249-260 (1982).
  7. Mohebbi, R., Gray, R., Tan, H. Driver reaction time to tactile and auditory rear-end collision warnings while talking on a cell phone. Human Factors. 51 (1), 102-110 (2009).
  8. Macdonald, J. S. P., Lavie, N. Visual perceptual load induces inattentional deafness. Attention, Perception & Psychophysics. 73 (6), 1780-1789 (2011).
  9. Parks, N. A., Hilimire, M. R., Corballis, P. M. Visual perceptual load modulates an auditory microreflex. Psychophysiology. 46 (3), 498-501 (2009).
  10. Van Erp, J. B. F., Van Veen, H. A. H. C. Vibrotactile in-vehicle navigation system. Transportation Research Part F: Traffic Psychology and Behaviour. 7 (4), 247-256 (2004).
  11. Lylykangas, J., Surakka, V., Salminen, K., Farooq, A., Raisamo, R. Responses to visual, tactile and visual–tactile forward collision warnings while gaze on and off the road. Transportation Research Part F: Traffic Psychology and Behaviour. 40, 68-77 (2016).
  12. Halabi, O., Bahameish, M. A., Al-Naimi, L. T., Al-Kaabi, A. K. Response times for auditory and vibrotactile directional cues in different immersive displays. International Journal of Human-Computer Interaction. 35 (17), 1578-1585 (2019).
  13. Geitner, C., Biondi, F., Skrypchuk, L., Jennings, P., Birrell, S. The comparison of auditory, tactile, and multimodal warnings for the effective communication of unexpected events during an automated driving scenario. Transportation Research Part F: Traffic Psychology and Behaviour. 65, 23-33 (2019).
  14. Scott, J., Gray, R. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving. Human Factors. 50, 264-275 (2008).
  15. Schott, G. D. Penfield’s homunculus: a note on cerebral cartography. Journal of Neurology, Neurosurgery, and Psychiatry. 56 (4), 329-333 (1993).
  16. Harrar, V., Harris, L. R. Simultaneity constancy: detecting events with touch and vision. Experimental Brain Research. 166 (34), 465-473 (2005).
  17. Kaptein, N. A., Theeuwes, J., van der Horst, R. Driving simulator validity: Some considerations. Transportation Research Record. 1550 (1), 30-36 (1996).
  18. Reed, M. P., Green, P. A. Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task. Ergonomics. 42 (8), 1015-1037 (1999).
  19. Levy, S. T., et al. Designing for discovery learning of complexity principles of congestion by driving together in the TrafficJams simulation. Instructional Science. 46 (1), 105-132 (2018).
  20. Lehmuskoski, V., Niittymäki, J., Silfverberg, B. Microscopic simulation on high-class roads: Enhancement of environmental analyses and driving dynamics: Practical applications. Transportation Research Record. 1706 (1), 73-81 (2000).
  21. Onieva, E., Pelta, D. A., Alonso, J., Milanes, V., Perez, J. A modular parametric architecture for the TORCS racing engine. 2009 IEEE Symposium on Computational Intelligence and Games. , 256-262 (2009).
  22. Zhu, A., Cao, S., Yao, H., Jadliwala, M., He, J. Can wearable devices facilitate a driver’s brake response time in a classic car-following task. IEEE Access. 8, 40081-40087 (2020).
  23. Deng, C., Cao, S., Wu, C., Lyu, N. Modeling driver take-over reaction time and emergency response time using an integrated cognitive architecture. Transportation Research Record: Journal of the Transportation Research Board. 2673 (12), 380-390 (2019).
  24. Deng, C., Cao, S., Wu, C., Lyu, N. Predicting drivers’ direction sign reading reaction time using an integrated cognitive architecture. IET Intelligent Transport Systems. 13 (4), 622-627 (2019).
  25. Guo, Z., Pan, Y., Zhao, G., Cao, S., Zhang, J. Detection of driver vigilance level using EEG signals and driving contexts. IEEE Transactions on Reliability. 67 (1), 370-380 (2018).
  26. Cao, S., Qin, Y., Zhao, L., Shen, M. Modeling the development of vehicle lateral control skills in a cognitive architecture. Transportation Research Part F: Traffic Psychology and Behaviour. 32, 1-10 (2015).
  27. Cao, S., Qin, Y., Jin, X., Zhao, L., Shen, M. Effect of driving experience on collision avoidance braking: An experimental investigation and computational modelling. Behaviour & Information Technology. 33 (9), 929-940 (2014).
  28. He, J., et al. Texting while driving: Is speech-based text entry less risky than handheld text entry. Accident; Analysis and Prevention. 72, 287-295 (2014).
  29. Cao, S., Qin, Y., Shen, M. Modeling the effect of driving experience on lane keeping performance using ACT-R cognitive architecture. Chinese Science Bulletin (Chinese Version). 58 (21), 2078-2086 (2013).
  30. Hsu, W., et al. Controlled tactile and vibration feedback embedded in a smart knee brace. IEEE Consumer Electronics Magazine. 9 (1), 54-60 (2020).
  31. Dim, N. K., Ren, X. Investigation of suitable body parts for wearable vibration feedback in walking navigation. International Journal of Human-Computer Studies. 97, 34-44 (2017).
  32. Kenntner-Mabiala, R., Kaussner, Y., Jagiellowicz-Kaufmann, M., Hoffmann, S., Krüger, H. -. P. Driving performance under alcohol in simulated representative driving tasks: an alcohol calibration study for impairments related to medicinal drugs. Journal of Clinical Psychopharmacology. 35 (2), 134-142 (2015).
  33. . Royal Meteorological Society Available from: https://www.rmets.org/resource/beaufort-scale (2018)
  34. Kubose, T. T., et al. The effects of speech production and speech comprehension on simulated driving performance. Applied Cognitive Psychology. 20 (1), (2006).
  35. He, J., Mccarley, J. S., Kramer, A. F. Lane keeping under cognitive load: performance changes and mechanisms. Human Factors. 56 (2), 414-426 (2014).
  36. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., Bengler, K. How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 58, 2063-2067 (2014).
  37. Cao, S., Liu, Y. Queueing network-adaptive control of thought rational (QN-ACTR): an integrated cognitive architecture for modelling complex cognitive and multi-task performance. International Journal of Human Factors Modelling and Simulation. 4, 63-86 (2013).
  38. Ackerley, R., Carlsson, I., Wester, H., Olausson, H., Backlund Wasling, H. Touch perceptions across skin sites: differences between sensitivity, direction discrimination and pleasantness. Frontiers in Behavioral Neuroscience. 8 (54), 1-10 (2014).
  39. Novich, S. D., Eagleman, D. M. Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Experimental Brain Research. 233 (10), 2777-2788 (2015).
  40. Gilhodes, J. C., Gurfinkel, V. S., Roll, J. P. Role of ia muscle spindle afferents in post-contraction and post-vibration motor effect genesis. Neuroscience Letters. 135 (2), 247-251 (1992).
  41. Strayer, D. L., Drews, F. A., Crouch, D. J. A comparison of the cell phone driver and the drunk driver. Human Factors. 48 (2), 381-391 (2006).
  42. Olejnik, S., Algina, J. Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemporary Educational Psychology. 25 (3), 241-286 (2000).
  43. . Statistics Teacher Available from: https://www.statisticsteacher.org/2017/09/15/what-is-power/ (2017)
  44. Maurya, A., Bokare, P. Study of deceleration behaviour of different vehicle types. International Journal for Traffic and Transport Engineering. 2 (3), 253-270 (2012).
  45. Woodward, K. L. The relationship between skin compliance, age, gender, and tactile discriminative thresholds in humans. Somatosensory & Motor Research. 10 (1), 63-67 (1993).
  46. Stevens, J. C., Choo, K. K. Spatial acuity of the body surface over the life span. Somatosensory & Motor Research. 13 (2), 153-166 (1996).
  47. Bhat, G., Bhat, M., Kour, K., Shah, D. B. Density and structural variations of Meissner’s corpuscle at different sites in human glabrous skin. Journal of the Anatomical Society of India. 57 (1), 30-33 (2008).
  48. Chentanez, T., et al. Reaction time, impulse speed, overall synaptic delay and number of synapses in tactile reaction neuronal circuits of normal subjects and thinner sniffers. Physiology & Behavior. 42 (5), 423-431 (1988).
  49. van Erp, J. B. F., van Veen, H. A. H. C. A multi-purpose tactile vest for astronauts in the international space station. Proceedings of Eurohaptics. , 405-408 (2003).
  50. Steffan, H. Accident investigation – determination of cause. Encyclopedia of Forensic Sciences (Second Edition). , 405-413 (2013).
  51. Galski, T., Ehle, H. T., Williams, J. B. Estimates of driving abilities and skills in different conditions. American Journal of Occupational Therapy. 52 (4), 268-275 (1998).
  52. Ihemedu-Steinke, Q. C., et al. Simulation sickness related to virtual reality driving simulation. Virtual, Augmented and Mixed Reality. , 521-532 (2017).
  53. Kennedy, R. S., Lane, N. E., Berbaum, K. S., Lilienthal, M. G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology. 3 (3), 203-220 (1993).
  54. Armagan, E., Kumbasar, T. A fuzzy logic based autonomous vehicle control system design in the TORCS environment. 2017 10th International Conference on Electrical and Electronics Engineering (ELECO). , 737-741 (2017).
  55. Hsieh, L., Seaman, S., Young, R. A surrogate test for cognitive demand: tactile detection response task (TDRT). Proceedings of SAE World Congress & Exhibition. , (2015).
  56. Bruyas, M. -. P., Dumont, L. Sensitivity of detection response task (DRT) to the driving demand and task difficulty. Proceedings of the 7th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design: Driving Assessment 2013. , 64-70 (2013).
  57. Conti-Kufner, A., Dlugosch, C., Vilimek, R., Keinath, A., Bengler, K. An assessment of cognitive workload using detection response tasks. Advances in Human Aspects of Road and Rail Transportation. , 735-743 (2012).
check_url/kr/61408?article_type=t&slug=tactile-vibrating-toolkit-driving-simulation-platform-for-driving

Play Video

Cite This Article
Zhu, A., Choi, A. T. H., Ma, K., Cao, S., Yao, H., Wu, J., He, J. Tactile Vibrating Toolkit and Driving Simulation Platform for Driving-Related Research. J. Vis. Exp. (166), e61408, doi:10.3791/61408 (2020).

View Video