Summary

癌症患者血浆样本中无细胞DNA检测

Published: September 09, 2020
doi:

Summary

本文提出了非侵入性液体活检技术的详细方案,包括采血、血浆和缓冲涂层分离、cfDNA和生殖系DNA提取、cfDNA或生殖系DNA的量化以及cfDNA片段富集分析。

Abstract

识别癌症患者肿瘤突变是疾病管理中非常重要的一步。这些突变是肿瘤诊断以及癌症患者治疗选择及其反应的生物标志物。目前检测肿瘤突变的黄金标准方法是通过肿瘤活检对肿瘤DNA进行基因检测。然而,这种侵入性方法很难反复执行,作为肿瘤突变的后续测试。液体活检是一种新的和新兴的技术,用于检测肿瘤突变,作为一种易于使用和非侵入性的活检方法。

癌细胞迅速繁殖。同时,许多癌细胞也发生凋亡。这些细胞的碎片被释放到患者的循环系统中,以及细碎的DNA片段,称为无细胞DNA(cfDNA)片段,携带肿瘤DNA突变。因此,为了使用液体活检技术识别基于 cfDNA 的生物标志物,从癌症患者身上采集血液样本,然后分离血浆和布菲涂层。接下来,血浆被处理用于cfDNA的分离,并处理相应的缓冲涂层,以隔离患者的基因组DNA。然后对两个核酸样品进行数量和质量检查:并使用下一代测序 (NGS) 技术分析突变。

在这份手稿中,我们提出了液体活检的详细方案,包括血液采集、血浆和缓冲涂层分离、cfDNA和生殖系DNA提取、cfDNA或生殖系DNA的量化以及cfDNA片段富集分析。

Introduction

技术进步导致数百个癌症基因组和转录体1的测序。这有助于了解不同癌症类型2的分子变化。对这些景观的进一步研究有助于描述与癌症或肿瘤进展有关的顺序体变和基因融合3, 通过连续破坏凋亡路径4。因此,体细胞突变和基因融合可以通过在特定肿瘤5型患者中作为生物标志物,识别现有原发性肿瘤预后6,根据分子变化7对继发肿瘤进行分类,确定可药性肿瘤靶点8,提供肿瘤信息。这些资料可方便选择癌症病人的个性化治疗,以及确定正面及负面的治疗反应然而,获取肿瘤材料来识别肿瘤组织的基因组分析是一个侵入性的过程10。此外,肿瘤活检只包括异质肿瘤的一小部分:因此,可能不代表整个肿瘤11的分子特征。连续监测和肿瘤基因成型需要反复收集肿瘤组织,由于肿瘤活检程序的侵入性和此类程序产生的安全问题,通常不可行。

另一方面,液体活检技术在过去十年中在精密肿瘤学方面获得了极大的关注。这主要是由于这种技术的非侵入性,以及它在多个时间点重复的可能性,从而使疾病课程15,16易于使用和安全的监测技术。液体活检基于肿瘤细胞迅速繁殖的现象,同时许多肿瘤细胞发生凋亡和坏死。这导致凋亡细胞碎片释放到患者的血液中,以及DNA片段,在凋亡17期间被切成精确大小。非癌细胞的凋亡也导致其细胞碎片释放到血液中,然而,这些细胞的凋亡率相对低于肿瘤细胞18。液体活检技术的合理性是捕捉与肿瘤相关的分子,如DNA、RNA、蛋白质和肿瘤细胞14、19,这些分子在血液中持续循环。各种技术20可用于分析这些分子,包括下一代测序 (NGS)、数字液滴聚合酶链反应 (ddPCR)、实时 PCR 和酶相关免疫糖体检测 (ELISA)。液体活检技术能够识别肿瘤细胞特性的生物标志物。这些生物标志分子不仅从肿瘤的特定部位释放出来,而且从肿瘤21的所有部位释放出来。因此,在液体活检中发现的标记物代表整个异质肿瘤的分子分析,以及体内其他肿瘤,因此,与基于组织活检的技术22相比具有优势。

cfDNA在循环血液中有很短的半生时间,从几分钟到1-2小时23不等。然而,cfDNA的短半寿命通过评估治疗反应和动态肿瘤评估促进实时分析。肿瘤衍生的 cfDNA 水平表示肿瘤阶段/大小的预后,通过多项研究证明,这表明 cfDNA 水平与生存结果24之间的关系。此外,研究已经证明,cfDNA具有更好的预测能力比现有的肿瘤标记25。cfDNA的预测在癌症治疗后更加明显,治疗后cfDNA水平较高,与存活率降低和对治疗的抵抗力密切相关。然而,治疗后 cfDNA 水平较低通常与积极的治疗反应相对应。此外,与传统的检测方法相比,cfDNA 有助于早期检测治疗反应。

cfDNA增加了癌症相关突变的早期发现的可能性:在早期疾病15,症状26 的出现和癌症诊断之前长达2年27。由于 cfDNA 是从多个肿瘤区域或肿瘤区域释放出来的,其分析提供了它所代表的28个肿瘤基因组的全面视图。因此,cfDNA能够检测组织样本29中可能遗漏的体细胞突变。由于肿瘤内异质性和亚克隆突变可以通过对跨越数千个碱基的基因组区域进行深度测序来检测,因此对 cfDNA 的分析能够发现具有不同基因组特征的特定分子亚型13。为了通过组织样本获得类似水平的信息,需要进行许多固体活检。

此外,在手术治疗和/或化疗后,局部疾病(如结肠癌、卵巢癌和肺癌)患者的 cfDNA 水平证明是癌症复发和治疗结果20的强大预后标记。此外,在结肠癌、乳腺癌和肺癌患者中,从血液中分析cfDNA可以成功检测出肿瘤特异性变化,从而提前几个月准确预测复发。此外,治疗耐药性标志物,如KRAS突变的CRC患者接受抗EGFR治疗30:各种疗法治疗后乳腺癌患者的PIK3CA、MED1EGFR等基因的VAF:EGFR T790M耐药性突变的肺癌患者治疗EGFR靶向TKIs32也可以通过cfDNA分析识别。

总之,cfDNA分析可用于识别肿瘤学领域13,33的精确生物标志物。在此协议中,对3名胶质瘤患者的血液样本和3个健康对照进行了处理,以从血浆中获取WBCs和cfDNA的基因组DNA。在胶质瘤癌症中,IDH、TERT、ATRX、EGFRTP53的突变作为诊断和预后标记,可能有助于胶质瘤肿瘤的早期诊断,分类不同类型的胶质瘤肿瘤,指导对个别患者的准确治疗,并了解治疗反应34,35。 这些基因的突变状态可以使用血液衍生的 cfDNA 来识别。在这份手稿中,我们提出了一个血浆衍生的cfDNA的详细协议,用于研究胶质瘤癌12的突变变化。本文中解释的基于 cfDNA 的液体活检方案可用于研究许多其他类型的癌症的突变变化。此外,最近的一项研究表明,cfDNA为基础的液体活检可以检测出50种不同类型的癌症36。

血液样本收集、储存和装运是本协议中的关键步骤,因为这些步骤期间不受控制的温度会导致 WBC 的裂解,导致基因组 DNA 从 WBC 释放到血浆中,并导致 cfDNA 样本的污染,从而影响其余过程37。由于不受控制的温度溶解会损害 cfDNA 的下游样品制备过程,例如 PCR 步骤38。血清含有高比例的细菌素cfDNA,而不是血浆,虽然它提出了肿瘤相关的cfDNA39的大背景噪音。因此,对于分离肿瘤相关的cfDNA,血浆是一个合适的样本39。在含有血液收集管的抗凝血剂中提取的血液应立即或在长达两个小时内离心,以分离血浆并避免 cfDNA 污染。在此协议中,使用专用的商业 cfDNA 保存采血管(见材料表),这是含有采血管的抗凝血剂的替代品。这些专用的血液收集管保存 cfDNA 和 cfRNA,并在环境温度下防止 WBCs 的裂解长达 30 天,在 37 °C 下最多 8 天。 这有助于在血液样本运输期间保持适当的温度,直到血浆和WBC分离40。

目前有三种类型的cfDNA提取方法:相隔离、基于硅膜的自旋柱和基于磁珠的分离41。与其他 cfDNA 提取方法42相比,基于硅膜的自旋柱法具有较高的完整性。

DNA定量评价是液体活检的一项基本要求,需要制定一个简单、经济、规范的程序,使之易于实施和广泛使用。cfDNA 量化的三种常用方法是光谱测量、氟化和 qPCR。氟化方法在传导的准确性、成本和易用性方面比其他方法更好。

cfDNA的完整性和纯度可以通过藻杉电泳或毛细纤维电泳来估计。阿加罗斯电泳既没有显示低浓度 cfDNA 的灵敏度,也没有高分辨率显示 cfDNA 的精确片段大小。另一方面,毛细细电泳通过克服相关挑战,比藻状电泳具有优势,因此,研究人员广泛用于 cfDNA 片段大小分析。在此协议中,使用自动毛细细电泳仪器估计了孤立的 cfDNA 的碎片大小分布(见 材料表)。

Protocol

在采血之前,需要并必须获得参与研究的受试者的知情同意。本手稿中描述的研究是按照拉宾医疗中心、以色列伦理委员会(伦理代码:0039-17-RMC)和德国伦理委员会(伦理代码:D 405/14)进行的。 1. 在 cfDNA 或 cfRNA 防腐剂管中采集和储存血液样本 正确标记保存管 收集约8 mL的血液到cf-DNA保存管(见 材料表),使用采血集和持有人,根据标准机构协…

Representative Results

等离子体分离在 cfDNA 或 cfRNA 防腐剂管中收集的 8.5-9 mL 血液的体积约为 4 mL 血浆。从 EDTA 管中收集的血液中分离的血浆体积可能因温度而异。在高于37°C的温度下接触含有血液的EDTA管会导致血浆体积减少44。 荧光计检测结果胶质瘤患者#1和#3各1 mL血浆中的 cfDNA 浓度和健康对照#H1、#H2和#H3分别为 137 ng、12.6 ng、6.52 ng、2.26 ng 和 2.4…

Discussion

在管子、装运和储存中收集患者的血液是液体活检的关键初始步骤。处理不当会损害血浆的质量,因此会干扰液体活检的结果。如果血液样本在EDTA血管中采集,血浆必须在采血后两小时内分离,以避免WBC裂解并将其基因组DNA释放到血浆48中。如果保存时间较长,WBCs 也可以在 EDTA 管中进行凋亡,由此产生的 cfDNA 片段可能会污染等离子体48中的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢癌症基因组学和复杂疾病生物计算实验室的成员,感谢他们敏锐的观察投入,并参与了该项目不同阶段的多次讨论。资金支持包括以色列癌症协会(2017-2019年M.F-M的ICA赠款)和以色列创新局的卡明赠款(M.F-M.)。

Materials

2100 Bioanalyzer Instrument Agilent Technologies, Inc. G2939BA The 2100 Bioanalyzer system is an established automated electrophoresis tool for the sample quality control of biomolecules.
Adjustable Clip for Priming Station Agilent Technologies, Inc. 5042-1398 Used in combination with syringe to apply defined pressure for chip priming.
Agilent High Sensitivity DNA Kit Agilent Technologies, Inc. 5067-4626 The High Sensitivity DNA assays are often used for sample quality control for next-generation sequencing libraries
cf-DNA/cf-RNA Preservative Tubes Norgen Biotek Corp. 63950 Norgen's cf-DNA/cf-RNA Preservative Tubes are closed, evacuated plastic tubes for the collection and the preservation of cf-DNA, circulating tumor DNA, cf-RNA and circulating tumor cells in human whole blood samples during storage and shipping
Chip Priming Station Agilent Technologies, Inc. 5065-4401 Used to load gel matrix into a chip with a syringe provided with each assay kit— used for RNA, DNA, and protein assays. Includes priming station, stop watch, and 1 syringe clip
Electrode Cleaner Kit Agilent Technologies, Inc. 5065-9951 Prevents cross-contamination. Removes bacterial or protein contaminants from electrodes.
Filters for Gel Matrix Agilent Technologies, Inc. 185-5990 Used for proper mixing of DNA dye concentrate and DNA gel matrix
IKA Basic Chip Vortex IKA-Werke GmbH & Co. KG MS-3-S36 Used for proper mixing of DNA ladder and DNA sample on Bioanalyzer assay chips
NucleoSpin Tissue kit MACHEREY-NAGEL 740952.5 With the NucleoSpin Tissue kit, genomic DNA can be prepared from tissue, cells
(e.g., bacteria), and many other sources.
QIAamp circulating nucleic acid kit Qiagen 55114 The QIAamp Circulating Nucleic Acid Kit enables efficient purification of these circulating nucleic acids from human plasma or serum and other cell-free body fluids.
QIAvac 24 Plus vacuum manifold Qiagen 19413 The QIAvac 24 Plus vacuum manifold is designed for vacuum processing of QIAGEN columns in parallel.
QIAvac Connecting System Qiagen 19419 In combination with the QIAvac Connecting System, the QIAvac 24 Plus vacuum manifold can be used as a flow-through system. The sample flow-through, containing possibly infectious material, is collected in a separate waste bottle.
Qubit 2.0 fluorometer Invitrogen Q32866 The Qubit 2.0 Fluorometer is an easy-to-use, analytical instrument designed to work with the Qubit assays for DNA, RNA, and protein quantitation.
Qubit assay tubes Thermo Fisher Scientific Q32856 Qubit assay tubes are 500 µL thin-walled polypropylene tubes for use with the Qubit Fluorometer.
Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32851 The Qubit dsDNA HS (High Sensitivity) Assay Kit is designed specifically for use with the Qubit Fluorometer. The assay is highly selective for double-stranded DNA (dsDNA) over RNA and is designed to be accurate for initial sample concentrations from 10 pg/µL to 100 ng/µL.
Vacuum Pump Qiagen 84010 used for vacuum processing of QIAGEN columns
Miscellaneous
50 ml centrifuge tubes
Crushed ice
Ethanol (96–100%)
Heating block or similar at 56 °C (capable of holding 2 ml collection tubes)
Isopropanol (100%)
Microcentrifuge
Phosphate-buffered saline (PBS)
Pipettes (adjustable)
Sterile pipette tips (pipette tips with aerosol barriers are recommended to help prevent cross-contamination)
Water bath or heating block capable of holding 50 mL centrifuge tubes at 60 °C

References

  1. Campbell, P. J., et al. Pan-cancer analysis of whole genomes. Nature. 578 (7793), 82-93 (2020).
  2. Liotta, L., Petricoin, E. Molecular profiling of human cancer. Nature Reviews Genetics. 1 (1), 48-56 (2000).
  3. Balamurali, D., et al. ChiTaRS 5.0: the comprehensive database of chimeric transcripts matched with druggable fusions and 3D chromatin maps. Nucleic Acids Research. 48 (1), 825-834 (2019).
  4. Trédan, O., et al. Molecular screening program to select molecular-based recommended therapies for metastatic cancer patients: Analysis from the ProfiLER trial. Annals of Oncology. 30 (5), 757-765 (2019).
  5. Oliveira, K. C. S., et al. Current perspectives on circulating tumor DNA, precision medicine, and personalized clinical management of cancer. Molecular Cancer Research. 18 (4), 517-528 (2020).
  6. Siegal, T. Clinical impact of molecular biomarkers in gliomas. Journal of Clinical Neuroscience. 22 (3), 437-444 (2015).
  7. Komori, T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurologia medico-chirurgica. 57 (7), 301-311 (2017).
  8. Duffy, M. J., O’Donovan, N., Crown, J. Use of molecular markers for predicting therapy response in cancer patients. Cancer Treatment Reviews. 37 (2), 151-159 (2011).
  9. Saenz-Antoñanzas, A., et al. Liquid Biopsy in Glioblastoma: Opportunities, Applications and Challenges. Cancers. 11 (7), 950 (2019).
  10. Marrugo-Ramírez, J., Mir, M., Samitier, J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. International Journal of Molecular Sciences. 19 (10), 2877 (2018).
  11. Pantel, K., Alix-Panabières, C. Liquid biopsy in 2016: Circulating tumour cells and cell-free DNA in gastrointestinal cancer. Nature Reviews Gastroenterology & Hepatology. 14 (2), 73-74 (2017).
  12. Bronkhorst, A. J., et al. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomolecular Detection and Quantification. 17, 100087 (2019).
  13. Cescon, D. W., Bratman, S. V., Chan, S. M., Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nature Cancer. 1 (3), 276-290 (2020).
  14. Palmirotta, R., et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic Advances in Medical Oncology. 10, 175883591879463 (2018).
  15. Cohen, J. D. J., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 359 (6378), 926-930 (2018).
  16. Wan, J. C. M., et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer. 17 (4), 223-238 (2017).
  17. Heitzer, E., Haque, I. S., Roberts, C. E. S., Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics. 20 (2), 71-88 (2018).
  18. Thierry, A. R., et al. Origins, structures, and functions of circulating DNA in oncology. Cancer and Metastasis Reviews. 35 (3), 347-376 (2016).
  19. Buscail, E., et al. High Clinical Value of Liquid Biopsy to Detect Circulating Tumor Cells and Tumor Exosomes in Pancreatic Ductal Adenocarcinoma Patients Eligible for Up-Front Surgery. Cancers. 11 (11), 1656 (2019).
  20. Heitzer, E., Ulz, P., Geigl, J. B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clinical Chemistry. 61 (1), 112-123 (2015).
  21. Kustanovich, A., Schwartz, R., Peretz, T., Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biology and Therapy. 20 (8), 1057-1067 (2019).
  22. Crowley, E., Di Nicolantonio, F., Loupakis, F., Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nature Reviews Clinical Oncology. 10 (8), 472-484 (2013).
  23. Celec, P., et al. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Reviews in Molecular Medicine. 20, (2018).
  24. Gautschi, O., et al. Origin and prognostic value of circulating KRAS mutations in lung cancer patients. Cancer Letters. 254 (2), 265-273 (2007).
  25. Bidard, F., et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. International Journal of Cancer. 134 (5), 1207-1213 (2013).
  26. Chan, K. C. A., et al. Analysis of Plasma Epstein–Barr Virus DNA to Screen for Nasopharyngeal Cancer. New England Journal of Medicine. 377 (6), 513-522 (2017).
  27. Mao, L., et al. Detection of Oncogene Mutations in Sputum Precedes Diagnosis of Lung Cancer. 암 연구학. 54 (7), 1634-1637 (1994).
  28. De Mattos-Arruda, L., et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nature communications. 6 (1), 8839 (2015).
  29. Khier, S., Lohan, L. Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future science OA. 4 (4), 295 (2018).
  30. Misale, S., et al. Resistance to Anti-EGFR therapy in colorectal cancer: From heterogeneity to convergent evolution. Cancer Discovery. 4 (11), 1269-1280 (2014).
  31. Beddowes, E., Sammut, S. J., Gao, M., Caldas, C. Predicting treatment resistance and relapse through circulating DNA. Breast. 34, 31-35 (2017).
  32. Sacher, A. G., et al. Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer. JAMA oncology. 2 (8), 1014-1022 (2016).
  33. Vaidyanathan, R., et al. Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab on a Chip. 19 (1), 11-34 (2019).
  34. Kelly, P. Gliomas: Survival, origin and early detection. Surgical Neurology International. 1 (1), 96 (2010).
  35. Faria, G., Silva, E., Da Fonseca, C., Quirico-Santos, T. Circulating Cell-Free DNA as a Prognostic and Molecular Marker for Patients with Brain Tumors under Perillyl Alcohol-Based Therapy. International Journal of Molecular Sciences. 19 (6), 1610 (2018).
  36. Liu, M. C., et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Annals of Oncology. 31 (6), 745-759 (2020).
  37. Enko, D., Halwachs-Baumann, G., Kriegshäuser, G. Plasma free DNA: Evaluation of temperature-associated storage effects observed for roche cell-free DNA collection tubes. Biochemia Medica. 29 (1), 153-156 (2019).
  38. Streleckiene, G., et al. Effects of Quantification Methods Isolation Kits, Plasma Biobanking, and Hemolysis on Cell-Free DNA Analysis in Plasma. Biopreservation and Biobanking. 17 (6), 553-561 (2019).
  39. Thress, K. S., et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nature Medicine. 21 (6), 560-562 (2015).
  40. Ward Gahlawat, A., et al. Evaluation of Storage Tubes for Combined Analysis of Circulating Nucleic Acids in Liquid Biopsies. International Journal of Molecular Sciences. 20 (3), 704 (2019).
  41. Lu, J. L., Liang, Z. Y. Circulating free DNA in the era of precision oncology: Pre- and post-analytical concerns. Chronic Diseases and Translational Medicine. 2 (4), 223-230 (2016).
  42. Iyapparaj, P., et al. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic Biosystems. 9 (1), 12 (2013).
  43. Ponti, G., et al. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clinica Chimica Acta. 479, 14-19 (2018).
  44. Medina Diaz, I., et al. Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS One. 11 (11), 0166354 (2016).
  45. Perkins, G., et al. Multi-Purpose Utility of Circulating Plasma DNA Testing in Patients with Advanced Cancers. PLoS One. 7 (11), 47020 (2012).
  46. Mouliere, F., et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Molecular Oncology. 8 (5), 927-941 (2014).
  47. Trigg, R. M., Martinson, L. J., Parpart-Li, S., Shaw, J. A. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature. Heliyon. 4 (7), 00699 (2018).
  48. Risberg, B., et al. Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients. Journal of Molecular Diagnostics. 20 (6), 883-892 (2018).
  49. Markus, H., et al. Evaluation of pre-analytical factors affecting plasma DNA analysis. Scientific Reports. 8 (1), 7375 (2018).
  50. Chen, Z., et al. Comprehensive Evaluation of the Factors Affecting Plasma Circulating Cell-Free DNA Levels and Their Application in Diagnosing Nonsmall Cell Lung Cancer. Genetic Testing and Molecular Biomarkers. 23 (4), 270-276 (2019).
  51. Schwarzenbach, H., Hoon, D. S. B., Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer. 11 (6), 426-437 (2011).
  52. Malyuchenko, N. V., et al. PARP1 Inhibitors: antitumor drug design. Acta Naturae. 7 (3), 27-37 (2015).
  53. Fleischhacker, M., Schmidt, B. Circulating nucleic acids (CNAs) and cancer-A survey. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer. 1775 (1), 181-232 (2007).
  54. Jung, K., Fleischhacker, M., Rabien, A. Cell-free DNA in the blood as a solid tumor biomarker—A critical appraisal of the literature. Clinica Chimica Acta. 411 (21-22), 1611-1624 (2010).
  55. Frenkel-Morgenstern, M., et al. ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data. Nucleic Acids Research. 41, 142-151 (2013).
  56. Frenkel-Morgenstern, M., et al. ChiTaRS 2.1–an improved database of the chimeric transcripts and RNA-seq data with novel sense-antisense chimeric RNA transcripts. Nucleic Acids Research. 43, 68-75 (2015).
  57. Gorohovski, A., et al. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions. Nucleic Acids Research. 45 (1), 790-795 (2017).
  58. Tate, J. G., et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research. 47 (1), 941-947 (2019).
  59. Brennan, C. W., et al. The somatic genomic landscape of glioblastoma. Cell. 155 (2), 462-477 (2013).
  60. Szopa, W., Burley, T. A., Kramer-Marek, G., Kaspera, W. Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. BioMed Research International. 2017, 1-13 (2017).
  61. Salesse, S., Verfaillie, C. M. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 21 (56), 8547-8559 (2002).
  62. Frenkel-Morgenstern, M., Valencia, A. Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics. 28 (12), 67-74 (2012).
  63. Frenkel-Morgenstern, M., et al. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts. Genome Research. 22 (7), 1231-1242 (2012).
  64. Simon, M., et al. TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro-Oncology. 17 (1), 45-52 (2015).
  65. Waitkus, M. S., Diplas, B. H., Yan, H. Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology. 18 (1), 16-26 (2016).
  66. Kindler, T., Meyer, R. G., Fischer, T. BCR-ABL as a target for novel therapeutic interventions. Expert Opinion on Therapeutic Targets. 6 (1), 85-101 (2002).
  67. Overman, M. J., et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology. 31 (1), 17-22 (2013).
  68. Vanderlaan, P. A., et al. Success and failure rates of tumor genotyping techniques in routine pathological samples with non-small-cell lung cancer. Lung Cancer. 84 (1), 39-44 (2014).
  69. Stewart, C. M., Tsui, D. W. Y. Circulating cell-free DNA for non-invasive cancer management. Cancer Genetics. 228-229, 169-179 (2018).
  70. Normanno, N., et al. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treatment Reviews. 70, 1-8 (2018).
  71. Hufnagl, C., et al. Evaluation of circulating cell-free DNA as a molecular monitoring tool in patients with metastatic cancer. Oncology Letters. 19 (2), 1551-1558 (2020).
  72. Petit, J., et al. Cell-Free DNA as a Diagnostic Blood-Based Biomarker for Colorectal Cancer: A Systematic Review. The Journal of Surgical Research. 236, 184-197 (2019).
  73. Poulet, G., Massias, J., Taly, V. Liquid Biopsy: General Concepts. Acta Cytologica. 63 (6), 449-455 (2019).
  74. Alix-Panabières, C. The future of liquid biopsy. Nature. 579 (7800), 9 (2020).
  75. Eisenstein, M. Could liquid biopsies help deliver better treatment. Nature. 579 (7800), 6-8 (2020).
check_url/kr/61449?article_type=t

Play Video

Cite This Article
Palande, V., Raviv Shay, D., Frenkel-Morgenstern, M. Detection of Cell-Free DNA in Blood Plasma Samples of Cancer Patients. J. Vis. Exp. (163), e61449, doi:10.3791/61449 (2020).

View Video