Summary

小鼠干粉配方的内经管理

Published: July 25, 2020
doi:

Summary

吸入干粉配方在治疗呼吸系统疾病方面有很大的潜力。在进入人类研究之前,有必要在前科研究中评估干粉配方的功效。提出了一种简单而非侵入性的方法,通过体外路线对小鼠的干粉进行管理。

Abstract

在开发可吸入干粉配方时,必须评估其在前层动物模型中的生物活动。本文介绍了一种在小鼠体内输送干粉制剂的非侵入性方法。提供由 200 μL 凝胶装载移液器尖端组成的干粉装装置,通过三向塞孔连接到 1 mL 注射器。少量干粉(1-2毫克)被装入移液器尖端,并在注射器中通过0.6毫升的空气分散。由于移液器尖端是一次性的,价格低廉,因此可以提前将不同的干粉配方加载到不同的提示中。在同一动物实验中,无需设备清洁和剂量补充,即可评估各种配方,从而节省时间并消除残留粉末交叉污染的风险。粉末分散的程度可以通过移液器尖端残留的粉末量来检查。包括一个带有定制光源和导引管的鼠标内导管协议。适当的插管是影响干粉配方在健康内输送到小鼠深肺区域的关键因素之一。

Introduction

肺病的施政途径为局部和系统行动提供治疗提供各种好处。对于肺病的治疗,可以通过肺分娩实现高局部药物浓度,从而减少所需剂量,降低全身副作用的发生率。此外,肺部相对较低的酶活性可以减少过早的药物代谢。肺部也有效地吸收药物的全身作用,由于大和良好的灌注表面积,极薄的上皮细胞层和肺毛细血管1的高血量。

吸入干粉配方已被广泛研究,用于预防和治疗各种疾病,如哮喘,慢性阻塞性肺病,糖尿病和肺疫苗接种2,3,4。固体状态下的药物通常比液体形式更稳定,干粉吸入器比雾化器5、6更便携更方便用户。在开发吸入干粉配方时,需要在肺管理7后,在药物前动物模型中评估其安全性、药效和疗效。与能主动吸入干粉的人类不同,肺向小动物输送干粉具有挑战性。有必要建立一个有效的协议,将干粉送到动物的肺部。

老鼠被广泛用作研究动物模型,因为它们经济,繁殖良好。它们也易于处理,许多疾病模型都已建立起来。给小鼠肺部施用干粉有两种主要方法:吸入和体内管理。为了吸入,小鼠被放置在全身或鼻子专用室,其中干粉被气溶胶化,动物呼吸气溶胶没有安定8,9。设备昂贵,药品输送效率低。虽然全身腔在技术上可能不那么具有挑战性,但仅鼻腔暴露室可以最大限度地减少药物暴露在身体表面。无论如何,仍然很难精确控制和确定交付到肺部的剂量。干粉主要沉积在鼻咽部位,其中粘膜清除突出10。此外,在管理过程中,室内老鼠承受着巨大的压力,因为它们受到限制,得不到食物和水的供应。对于体内管理,它通常是指将物质直接引入气管。有两种不同的技术来实现这一点:气管切除术和骨质管内分。前者需要外科手术,使气管切口,这是侵入性的,很少用于粉末管理。这里只描述了第二种技术。与吸入法相比,体内输病是小鼠肺输配的常用方法,因为其输送效率高药物损失最小这是一种简单快捷的方法,可在几毫克内精确地将少量粉末输送到鼠标。虽然小鼠在解剖学和生理上与人类不同,在插管过程中需要麻醉,但内科管理绕过上呼吸道,为评估干粉配方的生物活动(如肺吸收、生物利用和治疗效果提供了更有效的方法。

要在内经管理干粉,必须插管小鼠,这可能具有挑战性。本文介绍了定制干粉灌装器和管内装置的制造情况。演示了在小鼠肺部进行干燥粉末的灌接和窒息过程。

Protocol

本研究的实验已获香港大学活体动物教学及研究委员会(CULATR)批准。本研究使用喷雾冷冻干燥(SFD)制备的干粉配方,其中含有0.5%的红素酶信使RNA(mRNA)、5%的合成肽PEG12KL4和94.5%的曼尼托(w/w),用于演示肺16中的mRNA表达。SFD 粉末的质中空气动力学直径 (MMAD) 为 2.4μm。喷雾干燥(SD)曼尼托粉用于研究粉末分散16中使用的空气量的影响。SD 粉末的…

Representative Results

当使用干粉充气器将粉末气溶胶输送到动物的肺部时,所使用的空气量至关重要,因为它会影响粉末的安全性以及粉末分散效率。为了优化该方法,使用不同体积的空气(0.3 mL、0.6 mL 和 1.0 mL)来分散干粉(1 毫克喷雾干曼尼托),并在给药后监测小鼠的重量 48 小时(图 6)。使用0.3 mL和0.6 mL的空气不会导致小鼠在施用后体重减轻至48小时。将粉末与 1 mL 空气分散,在 24 小时…

Discussion

本文介绍了用于干粉窒息和体内插管的定制设备。在粉末装载步骤中,干粉末被加载到 200 μL 凝胶加载移液器尖端。重要的是轻轻敲击尖端,使粉末在尖端的狭窄端松散包装。但是,如果粉末包装太紧,它们会卡在尖端,无法正确分散。建议中和粉末和移液器尖端的静电荷,以方便粉末装载,特别是低密度和低相对湿度的粉末。引导管是设备的关键部件。它用于促进将装有粉末的移液器尖端插入?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢李光耀先生、梁振英先生和苏华莱士先生,感谢他们在制造光源和粉末充气器方面给予的善意协助:和动物成像援助的学院核心设施。这项工作得到了香港研究资助委员会(17300319)的支持。

Materials

BALB/c mouse Female; 7-9 weeks old; Body weight 20-25 g
CleanCap Firefly Luciferase mRNA TriLink Biotechnology L-7602
Dry Powder Insufflator PennCentury Model DP-4M
Ketamine 10% Alfasan International B.V. NA
Light emitting diode (LED) torch Unilite Internation PS-K1
Mannitol (Pearlitol 160C) Roquette 450001
Non-filter round gel loading pipette tip (200 µL) Labcon 1034-800-000
Nylon floss Reach 30017050
One milliliter syringe without needle Terumo SS-01T
Optical fibre Fibre Data OMPF1000
PEG12KL4 peptide EZ Biolab (PEG12)-KLLLLKLLLLKLLLLKLLLLK-NH2
Plastic Pasteur fine tip pipette Alpha Labotatories LW4061
Three-way stopcock Braun D201
Xylazine 2% Alfasan International B.V. NA
Zerostat 3 anti-static gun MILTY 5036694022153

References

  1. Newman, S. P. Drug delivery to the lungs: challenges and opportunities. Therapeutic Delivery. 8 (8), 647-661 (2017).
  2. Setter, S. M., et al. Inhaled dry powder insulin for the treatment of diabetes mellitus. Clinical Therapeutics. 29 (5), 795-813 (2007).
  3. Muralidharan, P., Hayes, D., Mansour, H. M. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opinion on Drug Delivery. 12 (6), 947-962 (2015).
  4. de Boer, A. H., et al. Dry powder inhalation: past, present and future. Expert Opinion on Drug Delivery. 14 (4), 499-512 (2017).
  5. Das, S., Tucker, I., Stewart, P. Inhaled dry powder formulations for treating tuberculosis. Current Drug Delivery. 12 (1), 26-39 (2015).
  6. Okamoto, H., et al. Stability of chitosan-pDNA complex powder prepared by supercritical carbon dioxide process. International Journal of Pharmaceutics. 290 (1-2), 73-81 (2005).
  7. He, J., et al. Evaluation of inhaled recombinant human insulin dry powders: pharmacokinetics, pharmacodynamics and 14-day inhalation. Journal of Pharmacy and Pharmacology. 71 (2), 176-184 (2019).
  8. Durham, P. G., Young, E. F., Braunstein, M. S., Welch, J. T., Hickey, A. J. A dry powder combination of pyrazinoic acid and its n-propyl ester for aerosol administration to animals. International Journal of Pharmaceutics. 514 (2), 384-391 (2016).
  9. Phillips, J. E., Zhang, X., Johnston, J. A. Dry powder and nebulized aerosol inhalation of pharmaceuticals delivered to mice using a nose-only exposure system. JoVE (Journal of Visualized Experiments). (122), e55454 (2017).
  10. Nahar, K., et al. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals). European Journal of Pharmaceutical Sciences. 49 (5), 805-818 (2013).
  11. Price, D. N., Muttil, P. Delivery of Therapeutics to the Lung. Methods in Molecular Biology. 1809, 415-429 (2018).
  12. Chang, R. Y. K., et al. Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrobial Agents and Chemotherapy. 62 (2), (2018).
  13. Ito, T., Okuda, T., Takayama, R., Okamoto, H. Establishment of an Evaluation Method for Gene Silencing by Serial Pulmonary Administration of siRNA and pDNA Powders: Naked siRNA Inhalation Powder Suppresses Luciferase Gene Expression in the Lung. Journal of pharmaceutical sciences. 108 (8), 2661-2667 (2019).
  14. Patil, J. S., Sarasija, S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India. 29 (1), 44-49 (2012).
  15. Ihara, D., et al. Histological Quantification of Gene Silencing by Intratracheal Administration of Dry Powdered Small-Interfering RNA/Chitosan Complexes in the Murine Lung. Pharmaceutical Research. 32 (12), 3877-3885 (2015).
  16. Qiu, Y., et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. Journal of Controlled Release. 314, 102-115 (2019).
  17. Pfeifer, C., et al. Dry powder aerosols of polyethylenimine (PEI)-based gene vectors mediate efficient gene delivery to the lung. Journal of Controlled Release. 154 (1), 69-76 (2011).
  18. Kim, I., et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 33 (22), 5574-5583 (2012).
  19. Tonnis, W. F., et al. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals. European Journal of Pharmaceutics and Biopharmaceutics. 88 (3), 1056-1063 (2014).
  20. Hoppentocht, M., Hoste, C., Hagedoorn, P., Frijlink, H. W., de Boer, A. H. In vitro evaluation of the DP-4M PennCentury insufflator. European Journal of Pharmaceutics and Biopharmaceutics. 88 (1), 153-159 (2014).
  21. Liao, Q., et al. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. International Journal of Pharmaceutics. 560, 144-154 (2019).
  22. Ito, T., Okuda, T., Takashima, Y., Okamoto, H. Naked pDNA Inhalation Powder Composed of Hyaluronic Acid Exhibits High Gene Expression in the Lungs. Molecular Pharmaceutics. 16 (2), 489-497 (2019).
  23. Chaurasiya, B., Zhou, M., Tu, J., Sun, C. Design and validation of a simple device for insufflation of dry powders in a mice model. European Journal of Pharmaceutical Sciences. 123, 495-501 (2018).
check_url/kr/61469?article_type=t

Play Video

Cite This Article
Qiu, Y., Liao, Q., Chow, M. Y., Lam, J. K. Intratracheal Administration of Dry Powder Formulation in Mice. J. Vis. Exp. (161), e61469, doi:10.3791/61469 (2020).

View Video