Summary

预测使用局部循环单核祖细胞在血管成形术治疗的危肢缺血患者截肢

Published: September 22, 2020
doi:

Summary

即使严重肢体缺血(CLI)中受阻血管成形术,下肢截肢也可能发生。单核先天细胞(MPC)反映血管修复。本协议描述了从接近血管成形术的循环中量化MPC,以及它与内皮功能障碍和下肢截肢预测的关系。

Abstract

严重肢体缺血(CLI)代表外周动脉疾病的晚期。血管成形术改善下肢的血液流动:然而,一些患者不可逆转地进展到截肢。血管损伤程度和血管修复机制是影响血管成形术后结果的因素。单核先天细胞 (MPC) 对血管损伤和修复有反应,具有反映血管疾病的能力。本协议描述了从血管成形术部位附近的血管血液循环中获得的MPC的量化,以及它与内皮功能障碍的关系,以及CLI患者血管成形术后未来30天内截肢的预测能力。

Introduction

外周动脉疾病 (PAD) 的特点是慢性和渐进性血管阻塞,血液供应有限1.在全球范围内,下肢的PAD影响约10%的老年人口,而多达7%的此类病例被提交到截肢2,3。

关键肢体缺血症 (CLI) 代表了 PAD1的最严重表现。患者通常在休息时感到疼痛,溃疡或坏死可归因于动脉被遮挡:而临床预后不利,在1年3、4、5年内截肢及死亡的风险为30%。

血管成形术是一种微创的血管内程序,可以恢复血液流向下肢的患者与CLI:然而,一些患者将不可避免地需要截肢,即使在血管成形术治疗1,5。早期识别血管成形术后的不利结果是相当有价值的,由于治疗执行的可能性。

传统危险因素可能为接受血管成形术6的CLI患者的主要肢体截肢提供有限的预测能力。以病理生理学为导向的生物标志物代表具有潜在临床应用的新方法,在血管损伤相关疾病中可能特别有用如今,拥有内皮修复性能的细胞种群在动脉粥样硬化斑块的所在地的参与,已日益得到认可

单核先天细胞(MPC)源自骨髓,具有血管再生能力的干细胞具有自身的结构和功能特征。由于MPC具有扩散、迁移和显示血管依从性的能力;这些细胞已成为良好的候选者,以反映内皮修复,以回应缺血10,11,12。此外,对血管损伤基础机制的持续关注促使人们探索局部生物标志物的预后作用,因为它们被认为反映了血管损伤并修复7、13、14。

本研究的目的是描述如何确定在进行血管成形术的CLI患者中,在血管阻塞附近传播的MPC数量:以及如何评估MPC与内皮功能障碍和截肢指标之间的关系。

与基于合并症和内脏血管特征的预后相比,局部MPC的数量显示出预测内皮功能障碍和截肢临床结果的具体能力。一直来,一些研究描述了类似的生物标志物在评估PAD15,16患者时的预后作用。

根据先前的结果7,这里描述的方法可能有助于早期识别在几个临床环境中有不良血管结果风险的人口,如下肢和冠状缺血,中风,血管炎,静脉血栓和其他涉及血管损伤和修复。

Protocol

国家”20德诺维姆布雷”ISSTE中心的机构研究伦理委员会批准了这项未来的议定书,所有登记的患者均表示书面知情同意。 1. 下肢血管块评估、血液取样和气球血管成形术 注:用于此实验的研究样本包括20名糖尿病患者,年龄为68岁,20人中有10人为男性。样本中有一半是吸烟者,最常见的共病是2型糖尿病、全身动脉高血压和/或脂质血症。该样本旨在针对年龄?…

Representative Results

在血管成形术现场,从阻塞动脉采集的血液样本是从20名糖尿病患者身上采集的,年龄为68岁,20人中有10人为男性。样本人口中有一半是吸烟者。血管病变主要得分为卢瑟福六级:而患者显示2型糖尿病(100%)、高血压(70%)的患病率较高和血脂异常(55%)。 下肢血管成形术实施后30天的临床随访。血管成形术后基线或动力学的MPC亚人口百分比与内皮功能障碍程度相关(斯皮?…

Discussion

血管块精确部位的采血可能显示技术困难:因此,我们在靠近血管块的地方进行了采血。同样,接近血管斑块的MPC数量似乎具有高度动态性,并可能在血管成形术前后产生变异。根据我们的观察,建议评估血管成形术后基线和30分钟后MPC数量的变化,因为它们可能反映血管损伤和修复过程中发生的几个病理生理过程。

建议在前3小时内进行MPC测定的血液样本处理:因此,在血?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢机构计划 E015 对项目 ID 356.2015 的支持。

Materials

BSA Roche 10735086001 Bovine Serum Albumin (BSA) as a buffering agent, stabilizer, standard and for blending.
Calibration Beads Miltenyi Biotec / MACS #130-093-607 MACQuant calibration beads are supplied in aqueous solution containing 0.05% sodium azide. 3.5 ml for up to 100 tests
CD133/1 (AC133)-PE Milteny Biotec / MACS #130-080-801 Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer
CD184 (CXCR4)-PE-VIO770 Miltenyi Biotec / MACS #130-103-798 Monoclonal, Isotype recombinant human IgG1, conjugated
CD309 (VEGFR-2/KDR)-APC Miltenyi Biotec / MACS #130-093-601 Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer
CD34-FITC Miltenyi Biotec / MACS #130-081-001 The monoclonal antibody clone AC136 detecs a class III epitope of the CD34
CD45- VioBlue Miltenyi Biotec / MACS #130-092-880 Monoclonal CD45 Antibody, human conjugated
Conical Tubes Thermo SCIENTIFIC #339651 15ml conical centrifuge tubes
Cytometry Tubes FALCON Corning Brand #352052 5 mL Polystyrene Round-Bottom Tube. 12×75 style. Sterile.
EDTA BIO-RAD #161-0729 Heavy metals, (as Pb) <10ppm, Fe<0.01%, As<1ppm, Insolubles<0.005%
Improved Neubauer Without brand Without catalog number Hemocytometer for cell counting. (range 0.1000mm, 0.0025mm2)
K2 EDTA Blood Collection Tubes BD Vacutainer #367863 Lilac plastic vacutainer tube (K2E) 10.8mg, 6 mL.
Lymphoprep Stemcell Technologies 01-63-12-002-A Sterile and checked on the presence of endotoxins. Density: 1.077±0.001g/mL
Paraformaldehyde SIGMA-ALDRICH #SZBF0920V Fixation of biological samples, (powder, 95%)
Pipette Transfer 1,3mL CRM Globe PF1016, PF1015 The transfer pipette is a tool that facilitates liquid transfer with greater accuracy.
Test Tubes KIMBLE CHASE 45060 13100 Heat-resistant test tubes. SIZE/CAP 13 x 100 mm

References

  1. Serrano-Hernando, F. J., Martín-Conejero, A. Peripheral artery disease: Pathophysiology, diagnosis and treatment. Revista Española de Cardiología. 60 (9), 969-982 (2007).
  2. Agarwal, S., et al. Burden of re-admissions among patients with critical limb ischemia. Journal of the American College of Cardiology. 69 (15), 1897-1908 (2017).
  3. Kolte, D., et al. Thirty-day re-admissions after endovascular or surgical therapy for critical limb ischemia: Analysis of the 2013 to 2014 nationwide re-admissions databases. Circulation. 136 (2), 167-176 (2017).
  4. Rowlands, T. E., Donnelly, R. Medical therapy for intermittent claudication. European Journal of Vascular and Endovascular Surgery. 34, 314-321 (2007).
  5. Cronewett, J. L. . Acute limb ischemia and lower extremity chronic arterial disease: Rutherford’s vascular surgery (8th ed.). , (2014).
  6. Dick, F., et al. Surgical or endovascular revascularization in patients with critical limb ischemia: influence of diabetes mellitus on clinical outcome. Journal of Vascular Surgery. 45 (4), 751-761 (2007).
  7. Suárez-Cuenca, J. A., et al. Coronary circulating mononuclear progenitor cells and soluble biomarkers in the cardiovascular prognosis after coronary angioplasty. Journal of Cellular and Molecular Medicine. 23 (7), 4844-4849 (2019).
  8. Franz, R., et al. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. Journal of Vascular Surgery. 50 (6), 1378-1390 (2009).
  9. Benoit, E., O’Donnell, T. F., Patel, A. N. Safety and efficacy of autologous cell therapy in critical limb ischemia: A systematic review. Cellular Transplantation. 22 (3), 545-562 (2013).
  10. Hill, J. M., et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine. 348 (7), 593-600 (2003).
  11. Schmidt-Lucke, C., et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 111 (22), 2981-2987 (2005).
  12. Smadja, D. M. Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy. 14 (2), 232-239 (2012).
  13. Kremastinos, D. T., et al. Intracoronary cyclic-GMP and cyclic-AMP during percutaneous transluminal coronary angioplasty. International Journal of Cardiology. 53 (3), 227-232 (1996).
  14. Truong, Q. A., Januzzi, J. L., Szymonifka, J., Thai, W. E., Wai, B., Lavender, Z. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm. 11 (12), 2167-2175 (2014).
  15. Ding, N., et al. Fibrosis and inflammatory markers and long-term risk of peripheral artery disease: The ARIC study. Arteriosclerosis, Thrombosis and Vascular Biology. 40 (9), 2322-2331 (2020).
  16. Potier, L., et al. Plasma copeptin and risk of lower-extremity amputation in Type 1 and Type 2 diabetes. Diabetes Care. 40 (12), 2290-2297 (2019).
  17. Schmidt-Lucke, C., et al. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One. 5 (1), 13790 (2010).
  18. Marboeuf, P., et al. Inflammation triggers colony forming endothelial cell mobilization after angioplasty in chronic lower limb ischemia. Journal of Thrombosis and Haemostasis. 6 (1), 195-197 (2008).
  19. Regueiro, A., et al. Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: Time-course after acute myocardial infarction and stroke. Journal of Molecular and Cellular Cardiology. 80, 146-155 (2015).
check_url/kr/61503?article_type=t

Play Video

Cite This Article
Suárez-Cuenca, J. A., Vera-Gómez, E., Hernández-Patricio, A., Ruíz-Hernández, A. S., Gutiérrez-Buendía, J. A., Zamora-Alemán, C. R., Melchor-López, A., Rizo-García, Y. A., Lomán-Zúñiga, O. A., Escotto-Sánchez, I., Rodríguez-Trejo, J. M., Pérez-Cabeza de Vaca, R., Téllez-González, M. A., Mondragón-Terán, P. Predicting Amputation using Local Circulating Mononuclear Progenitor Cells in Angioplasty-treated Patients with Critical Limb Ischemia. J. Vis. Exp. (163), e61503, doi:10.3791/61503 (2020).

View Video