Summary

使用具有嵌套的 Helical 结构的新颖燃料颗粒提高混合火箭发动机的燃烧性能

Published: January 18, 2021
doi:

Summary

提出了一种利用固体燃料颗粒与新型嵌套级级结构技术,提高混合火箭发动机的燃烧性能。

Abstract

提出了一种利用新型燃料粒结构提高混合火箭发动机燃烧性能的技术。该技术利用丙烯酸苯乙烯和石蜡燃料的不同回归率,通过相邻叶片之间的凹槽形成的涡流和再循环区增加物质和能量的交换。离心铸造技术用于将石蜡燃料铸造成由三维印刷制造的丙烯酸二苯乙烯苯乙烯基板。以氧为氧化剂,对新型燃料粒的燃烧性能进行了一系列试验。与石蜡燃料颗粒相比,具有嵌套的半节式半节式半价的燃料颗粒在整个燃烧过程中可保持,其回归率显著改善,燃烧效率提高潜力巨大。

Introduction

迫切需要一种提高混合动力火箭发动机燃烧性能的技术。迄今为止,混合动力火箭发动机的实际应用仍然远远低于固体和液体火箭发动机1、2。传统燃料的低回归率限制了混合动力火箭发动机3、4的推力性能的提高。此外,由于内扩散燃烧5,其燃烧效率略低于其他化学能火箭,如图1所示。虽然已经研究和开发了各种技术,如使用多端口6,增强添加剂7,8,9,液化燃料10,11,12,涡流喷射13,突起14,和虚张声势体15,这些方法与体积利用率,燃烧效率,机械性能和冗余质量的问题有关。到目前为止,燃料谷物的结构改进,没有这些缺点,已引起更多的关注,作为提高燃烧性能的有效手段16,17。三维(3D)打印的出现,通过快速和廉价地生产复杂的常规谷物设计或非常规燃料谷物18、19、20、21、22、23、24、25、26、27、28、29、30,为提高混合火箭发动机的性能提供了有效的方法然而,在燃烧过程中,燃烧性能的这些改善随着特性结构的燃烧而降低,导致燃烧性能下降23。我们已经证明,一个新的设计是有用的,以提高混合动力火箭发动机31的性能。本文介绍了该技术的细节和代表性的结果。

燃料颗粒由丙烯酸酯-二苯乙烯(ABS)和嵌套石蜡基燃料制造的利状基板组成。基于离心和3D打印,结合了两种不同回归率的燃料的优点。图2显示了燃烧后燃料颗粒的特殊节状结构。当气体通过燃料颗粒时,在叶片之间的凹槽中同时创建多个再循环区,如图3所示。内表面的这种特性结构增加了燃烧室中的湍流动能和涡流数,增加了燃烧室中物质和能量的交换。最终,新型燃料粒的回归率得到有效提高。提高回归率的效果已充分证明:特别是,在4克/厘米2,32的质量通量下,新型燃料粒的回归率比石蜡燃料的回归率高20%。

具有嵌套的升谷结构的燃料颗粒的一个优点是制造简单。成型工艺主要需要熔体搅拌机、离心机和 3D 打印机。3D 打印形成的 ABS 基材大大降低了制造成本。另一个重要和独特的优点是,增强效果在燃烧过程中不会消失。

本文介绍了利用新型燃料粒结构提高混合动力火箭发动机燃烧性能的实验系统和程序。此外,本文还提出了三种具有代表性的燃烧性能参数比较,论证了该技术的可行性,包括燃烧室压力的振荡频率、回归率和以特征速度为特征的燃烧效率。

Protocol

1. 实验设置和程序 燃料谷物的准备注:结构新颖的燃料颗粒由两部分组成,如图 4所示。石蜡燃料作为新谷物的主要部分,占总质量的80%以上。ABS 基板用作附加燃料。这种燃料颗粒的制备是通过3D打印和离心铸造相结合实现的。 基底制备 打开用于 ABS 基板绘图的 3D 软件。注:ABS 基板旨在为石蜡燃料提供倾斜框架和支持,由 12 个集成叶片组成,这?…

Representative Results

图 7 显示了燃烧室压力和氧化剂质量流速的变化。为了提供调节流量的必要时间,氧化剂提前进入燃烧室。当发动机在燃烧室中制造压力时,氧质量流速会迅速下降,然后保持相对稳定的变化。在燃烧过程中,燃烧室中的压力保持相对稳定。 图8中显示了燃烧室压力振荡频率 的比较图像。新型燃料颗粒的压力波动光谱包含三个不同…

Discussion

本文提出的技术是采用嵌套的利高结构的燃料颗粒的一种新方法。在建立必要的设备和设施方面没有困难。通过3D打印可以轻松生产下形结构,离心铸造可以方便地进行石蜡燃料的嵌套。熔融沉积成型 (FDM) 3D 打印机不贵,离心机成本低。

当发现形状燃料颗粒的内表面有不容忽视的裂缝时,熔融混合器中的加热温度升高到200°C。 然后,利用石蜡基燃料的低粘度特性进行修复…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(第11802315号、11872368号和11927803号)和国防重点实验室设备预研究基金(第614270119402号)的支持。

Materials

3D printer Raise3D N2 Plus 305 × 305 × 605 mm
3D drawing software Autodesk Inventor
ABS Raise3D ABS black 1.75 mm
Camera Sony A6000
Carbon Aibeisi ATP-88AT
Centrifugal machine Luqiao Langbo Motor Co.Ltd Custom ≤1450 rpm
Data processing software OriginLab Origin 2020
EVA DuPont Company 360 binder
Mass flow controller Bronkhost F-203AV 0-1500 ln/min
Melt mixer Winzhou Chengyi Jixie Co.Ltd Custom
Multi-function data acquisition card NI USB-6211
Paraffin Sinopec Group Company 58# Fully refined paraffin, Melting point≈58℃
PE wax Qatar petroleum chemical industry Company Custom
Slicing software Raise3D ideaMaker
Spark plug NGK PFR7S8EG
Stearic acid ical Reagent Company Custom hardener

References

  1. Boiron, A. J., Cantwell, B. . 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2013).
  2. Mazzetti, A., Merotto, L., Pinarello, G. Paraffin-based hybrid rocket engines applications: A review and a market perspective. Acta Astronautica. 126, 286-297 (2016).
  3. Karabeyoglu, A., Zilliac, G., Cantwell, B. J., DeZilwa, S., Castellucci, P. Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels. Journal of Propulsion and Power. 20 (6), 1037-1045 (2004).
  4. Jens, E. T., Narsai, P., Cantwell, B., Hubbard, G. S. . 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2014).
  5. Kuo, K. K., Chiaverini, M. J. . Fundamentals of Hybrid Rocket Combustion and Propulsion. , (2007).
  6. Boardman, T., et al. . 33rd Joint Propulsion Conference and Exhibit. , (1997).
  7. Connell, T. L., et al. Enhancement of Solid Fuel Combustion in a Hybrid Rocket Motor Using Amorphous Ti-Al-B Nanopowder Additives. Journal of Propulsion and Power. 35 (3), 662-665 (2019).
  8. Veale, K., Adali, S., Pitot, J., Brooks, M. A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives. Acta Astronautica. 141, 196-208 (2017).
  9. Karakas, H., Kara, O., Ozkol, I., Karabeyoglu, A. M. . AIAA Propulsion and Energy 2019 Forum. , (2019).
  10. Di Martino, G. D., Mungiguerra, S., Carmicino, C., Savino, R. Computational fluid-dynamic modeling of the internal ballistics of paraffin-fueled hybrid rocket. Aerospace Science and Technology. 89, 431-444 (2019).
  11. Leccese, G., Cavallini, E., Pizzarelli, M. . AIAA Propulsion and Energy 2019 Forum. , (2019).
  12. Cardoso, K. P., Ferrão, L. F. A., Kawachi, E. Y., Gomes, J. S., Nagamachi, M. Y. Ballistic Performance of Paraffin-Based Solid Fuels Enhanced by Catalytic Polymer Degradation. Journal of Propulsion and Power. 35 (1), 115-124 (2019).
  13. Paccagnella, E., Barato, F., Pavarin, D., Karabeyoğlu, A. Scaling Parameters of Swirling Oxidizer Injection in Hybrid Rocket Motors. Journal of Propulsion and Power. 33 (6), 1378-1394 (2017).
  14. Kumar, R., Ramakrishna, P. A. Effect of protrusion on the enhancement of regression rate. Aerospace Science and Technology. 39, 169-178 (2014).
  15. Kumar, R., Ramakrishna, P. A. Enhancement of Hybrid Fuel Regression Rate Using a Bluff Body. Journal of Propulsion and Power. 30 (4), 909-916 (2014).
  16. Degges, M. J., et al. . 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2013).
  17. Connell, T., Young, G., Beckett, K., Gonzalez, D. R. . AIAA Scitech 2019 Forum. , (2019).
  18. Whitmore, S., Peterson, Z., Eilers, S. . 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. , (2011).
  19. Whitmore, S. A., Armstrong, I. W., Heiner, M. C., Martinez, C. J. . 2018 Joint Propulsion Conference. , (2018).
  20. Whitmore, S. A., Peterson, Z. W., Eilers, S. D. Comparing Hydroxyl Terminated Polybutadiene and Acrylonitrile Butadiene Styrene as Hybrid Rocket Fuels. Journal of Propulsion and Power. 29 (3), 582-592 (2013).
  21. Whitmore, S. A., Sobbi, M., Walker, S. . 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2014).
  22. Whitmore, S. A., Walker, S. D. Engineering Model for Hybrid Fuel Regression Rate Amplification Using Helical Ports. Journal of Propulsion and Power. 33 (2), 398-407 (2017).
  23. Creech, M., et al. . 53rd AIAA Aerospace Sciences Meeting. , (2015).
  24. Lyne, J. E., et al. . 2018 Joint Propulsion Conference. , (2018).
  25. Elliott, T. S., et al. . 52nd AIAA/SAE/ASEE Joint Propulsion Conference. , (2016).
  26. Armold, D., et al. . 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2013).
  27. Armold, D. M., et al. . 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. , (2014).
  28. Fuller, J., Ehrlich, D., Lu, P., Jansen, R., Hoffman, J. . 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. , (2011).
  29. Lee, C., Na, Y., Lee, J. W., Byun, Y. H. Effect of induced swirl flow on regression rate of hybrid rocket fuel by helical grain configuration. Aerospace Science and Technology. 11 (1), 68-76 (2007).
  30. Tian, H., Li, Y., Li, C., Sun, X. Regression rate characteristics of hybrid rocket motor with helical grain. Aerospace Science and Technology. 68, 90-103 (2017).
  31. Hitt, M. A. . 2018 Joint Propulsion Conference. , (2018).
  32. Wang, Z., Lin, X., Li, F., Yu, X. Combustion performance of a novel hybrid rocket fuel grain with a nested helical structure. Aerospace Science and Technology. 97, (2020).
  33. McBride, J. B., Gordon, S. . Computer Program for Calculation of Complex Chemical Equilibrium Compositions and APPlications. , (1996).
  34. De Zilwa, S., Zilliac, G., Karabeyoglu, A., Reinath, M. . 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. , (2003).
  35. Franco, M., et al. Regression Rate Design Tailoring Through Vortex Injection in Hybrid Rocket Motors. Journal of Spacecraft and Rockets. 57 (2), 278-290 (2020).
check_url/kr/61555?article_type=t

Play Video

Cite This Article
Wang, Z., Lin, X., Li, F., Zhang, Z., Yu, X. Improving the Combustion Performance of a Hybrid Rocket Engine using a Novel Fuel Grain with a Nested Helical Structure. J. Vis. Exp. (167), e61555, doi:10.3791/61555 (2021).

View Video