Summary

自由行为 秀丽隐杆线虫 的钙成像,具有良好控制,非局部化振动

Published: April 29, 2021
doi:

Summary

这里报道的是一个用于自由行为秀 丽隐杆线虫 的钙成像系统,具有良好控制的,非局部化的振动。该系统允许研究人员在纳米级位移下唤起具有良好控制特性的非局部振动,并在 秀丽隐杆线虫 对振动的反应期间量化钙电流。

Abstract

非局部化机械力,如振动和声波,影响从发育到稳态的各种生物过程。动物通过改变它们的行为来应对这些刺激。要了解这种行为修饰背后的机制,需要在感兴趣的行为期间量化神经活动。在这里,我们报告了一种在自由行为秀 丽隐杆线虫 中进行钙成像的方法,该隐杆线虫具有特定频率,位移和持续时间的非局部振动。该方法允许使用声学换能器产生控制良好的非局部振动,并在单细胞分辨率下量化诱发的钙反应。作为原理证明,在 秀丽隐杆线虫 对振动的逃逸反应期间,证明了单个中间神经元AVA的钙反应。该系统将有助于理解对机械刺激的行为反应背后的神经机制。

Introduction

动物经常暴露于非局部化的机械刺激,如振动或声波12。由于这些刺激影响体内平衡,发育和繁殖,动物必须改变其行为以应对它们345。然而,这种行为改变背后的神经回路和机制知之甚少。

线虫中的机械感觉行为,秀丽隐杆线虫,是一个简单的行为范式,其中蠕虫在遇到非局部振动时,通常从向前运动转变为向后逃逸反应6。这种行为背后的神经回路主要由五个感觉神经元,四对中间神经元和几种类型的运动神经元78组成。此外,蠕虫在涉及重复刺激间隔训练910,11之后习惯于这种机械刺激。因此,这种简单的行为反应构成了研究非局部振动诱发行为和记忆背后的神经机制的理想系统。图中说明了在非局部振动影响下自由行为蠕虫的钙成像方案。与以前报告的系统相比,该系统很简单,因为它不需要额外的摄像头进行跟踪;但是,它允许我们改变非局部振动的频率,位移和持续时间。由于AVA中间神经元的活化诱导了向后逃逸反应,因此在AVA特异性启动子的控制下,以共表达GCaMP(钙指示剂)和TagRFP(一种对钙不敏感的荧光蛋白)的蠕虫为例(详见材料表)。该协议演示了当蠕虫从向前切换到向后移动时AVA神经元的激活。该协议有助于理解机械感觉行为背后的神经回路机制。

Protocol

1. 蠕虫的培养直至钙成像 在钙成像实验前四天,将两个成年ST12蠕虫转移到新的线虫生长培养基(NGM)板(材料表)上,在该板上,大 肠杆菌 OP50使用细胞扩散器以方形模式(约4 mm x 4 mm)条纹,以便蠕虫在钙成像过程中将大部分时间花在细菌中12。 将此NGM板在培养箱中在20°C下孵育4天(材料表)。 2. 硬件设…

Representative Results

在这里,在AVA中间神经元特异性启动子的控制下表达GCaMP和TagRFP的蠕虫被用作自由行为 秀丽隐杆线虫钙成像的一个例子。GCaMP和TagRFP通道数据以一系列图像的形式获得,其中一些图像如图 6 所示,并显示为电影(补充电影1)。由我们的非局部振动系统引起的培养皿板的位移(图7)也被量化。位移可以通过在振动控制软件(<strong class…

Discussion

通常,神经活动的量化需要引入探针和/或限制动物身体运动。然而,对于机械感觉行为的研究,探针的侵入性引入和约束本身构成机械刺激。 秀丽隐杆线虫 提供了一个系统来规避这些问题,因为它的特征是透明的,并且因为它具有一个简单,紧凑的神经回路,仅包含302个神经元。将这些优点与先前开发的唤起纳米级位移的非局部振动的方法13相结合,这里说明了一种用?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Caenorhabditis 遗传学中心提供本研究中使用的菌株。本出版物由JSPS KAKENHI科学研究补助金(B)(授予号为。JP18H02483),关于创新领域“软机器人科学”项目(授予号:JP18H05474),日本医学研究开发机构(拨款19gm6110022h001)和岛津基金会的PRIME。

Materials

Data anaylsis software
DualViewImaging.nb author For analysis of acquired data
Mathematica12 Wolfram For running data anaysis software DualViewImaging
Escherichia coli and C. elegans strains
E. coli OP50 Caenorhabditis Genetics Center OP50 Food for C. elegans. Uracil auxotroph. E. coli B.
lite-1(ce314) strain Caenorhabditis Genetics Center KG1180 Light-insensitive mutant
lite-1(ce314) strain expressing NLS-GCaMP-NLS and TagRFP under the control of the AVA-speciric promoter author ST12 lite-1(ce314) mutant carrying the genes expressing NLS-GCaMP5G-NLS (NLS; nuclear localization signal) and TagRFP under the control of the flp-18 promoter as an extrachoromosomal arrays
Laser Doppler vibrometer
Lase Doppler vibrometer Polytec Japan IVS-500 For quantifying  frequency and displacement generated by the accoustic transducer
Mouse macro system
Assay.txt Author Script for temporally and specially controlling mouse cursol in Windows
HiMacroEx Vector https://www.vector.co.jp/download/file/winnt/util/fh667310.html Free download software for controling mouse cursor based on a script
Nematode growth media plate
Agar purified, powder Nakarai tesque 01162-15 For preparation of NGM plates
Bacto pepton Becton Dickinson 211677 For preparation of NGM plates
Calcium chloride Wako 036-00485 For preparation of NGM plates
Cholesterol Wako 034-03002 For preparation of NGM plates
di-Photassium hydrogenphosphate Nakarai tesque 28727-95 For preparation of NGM plates
LB broth, Lennox Nakarai tesque 20066-95 For culture of E. coli OP50
Magnesium sulfate anhydrous TGI M1890 For preparation of NGM plates
Potassium Dihydrogenphosphate Nakarai tesque 28720-65 For preparation of NGM plates
Sodium Chloride Nakarai tesque 31320-05 For preparation of NGM plates
Petri dishes (60 mm) Nunc 150270 For preparation of NGM plates
Nonlocalized vibration device
Amplifier LEPY LP-A7USB For stimulation with controllable vibration
Acoustic transducer MinebeaMitsumi LVC25 For stimulation with controllable vibration
WaveGene Ver. 1.5 Thrive http://efu.jp.net/soft/wg/down_wg.html Free download software for controling vibration property
Noninvasive calcium imaging
2-Channel benchtop 3-phase brushless DC servo controller Thorlabs BBD202 Compatible controller for MLS203-1 stages
479/585 nm BrightLine dual-band bandpass filter Semrock FF01-479/585-25 For acquisition of two channel images (GCaMP and TagRFP)
505/606 nm BrightLine dual-edge standard epi-fluorescence dichroic beamsplitter Semrock FF505/606-Di01-25×36 For acquisition of two channel images (GCaMP and TagRFP)
512/25 nm BrightLine single-band bandpass filter Semrock FF01-512/25-25 For acquisition of two channel images (GCaMP and TagRFP)
630/92 nm BrightLine single-band bandpass filter Semrock FF01-630/92-25 For acquisition of two channel images (GCaMP and TagRFP)
Computer Dell Precision T7600 Windows7 with Intel Xeon CPU ES-2630 and 8 GB of RAM
High-speed x-y motorized stage Thorlabs MLS203-1 Fast XY scannning stage
Image splitting optics Hamamatsu photonics A12801-01 For acquisition of two channel images (GCaMP and TagRFP) generated by W-VIEW GEMINI Image spliting optics
LED light source CoolLED pE-4000 For generating 470 nm and 560 nm excitation light
Microscope Olympus MVX10
sCMOS camera Andor Zyla
x 2 Objective lens Olympus MVPLAPO2XC Working distance 20 mm and numerical aperture 0.5
Plasmid
pKDK66 plasmid author pKDK66 Co-injection marker
pTAK83 plasmid author pTAK83 Plasmid for expression of TagRFP under the control of  the flp-18 promoter
pTAK144 plasmid author pTAK144 Plasmid for expression of NLS-GCaMP5G-NLS under the control of  the flp-18 promoter
Tracking software
homingback.vi author SubVi file for tracking a fluoresent spot of a worm through feedback control of sCMOS camera and x-y motorized stage
LabVIEW National instruments For running tracking software
Zyla Control ver.2.6CI.vi author For tracking a fluoresent spot of a worm through feedback control of sCMOS camera and x-y motorized stage

References

  1. Hill, P. S. M., Wessel, A. Biotremology. Current Biology. 26 (5), 187-191 (2016).
  2. Fettiplace, R., Hackney, C. M. The sensory and motor roles of auditory hair cells. Nature Reviews Neuroscience. 7 (1), 19-29 (2006).
  3. Vogel, V., Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology. 7 (4), 265-275 (2006).
  4. Katta, S., Krieg, M., Goodman, M. B. Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annual Review of Cell and Developmental Biology. 31, 347-371 (2015).
  5. Orr, A. W., Helmke, B. P., Blackman, B. R., Schwartz, M. A. Mechanisms of mechanotransduction. Developmental Cell. 10 (1), 11-20 (2006).
  6. Goodman, M. B., Sengupta, P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. 유전학. 212 (1), 25-51 (2019).
  7. Chalfie, M., et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 5 (4), 956-964 (1985).
  8. Wicks, S. R., Rankin, C. H. The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines habituation kinetics of the Caenorhabditis elegans tap withdrawal response. Journal of Comparative Physiology. A Sensory, Neural, and Behavioral Physiology. 179 (5), 675-685 (1996).
  9. Rankin, C. H., Beck, C. D., Chiba, C. M. Caenorhabditis elegans: a new model system for the study of learning and memory. Behavioural Brain Research. 37 (1), 89-92 (1990).
  10. Bozorgmehr, T., Ardiel, E. L., McEwan, A. H., Rankin, C. H. Mechanisms of plasticity in a Caenorhabditis elegans mechanosensory circuit. Frontiers in Physiology. 4, 88 (2013).
  11. Sugi, T., Ohtani, Y., Kumiya, Y., Igarashi, R., Shirakawa, M. High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 111 (48), 17236-17241 (2014).
  12. Stiernagle, T. Maintenance of C. elegans. WormBook. , 1-11 (2006).
  13. Sugi, T., Okumura, E., Kiso, K., Igarashi, R. Nanoscale mechanical stimulation method for quantifying C. elegans mechanosensory behavior and memory. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry. 32 (11), 1159-1164 (2016).
  14. Brownell, P. H. Compressional and surface waves in sand: used by desert scorpions to locate prey. Science. 197 (4302), 479-482 (1977).
  15. Clark, D. A., Gabel, C. V., Gabel, H., Samuel, A. D. T. Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. Journal of Neuroscience. 27 (23), 6083-6090 (2007).
  16. Tsukada, Y., et al. Reconstruction of spatial thermal gradient encoded in thermosensory neuron AFD in Caenorhabditis elegans. Journal of Neuroscience. 36 (9), 2571-2581 (2016).
  17. Piggott, B. J., Liu, J., Feng, Z., Wescott, S. A., Xu, X. Z. S. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell. 147 (4), 922-933 (2011).
  18. Nguyen, J. P., et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 113 (8), 1074-1081 (2016).
  19. Schrodel, T., Prevedel, R., Aumayr, K., Zimmer, M., Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods. 10 (10), 1013-1020 (2013).
  20. Prevedel, R., et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods. 11, 727-730 (2014).
  21. Nichols, A. L. A., Eichler, T., Latham, R., Zimmer, M. A global brain state underlies C. elegans sleep behavior. Science. 356 (6344), (2017).
  22. Zheng, M., Cao, P., Yang, J., Xu, X. Z. S., Feng, Z. Calcium imaging of multiple neurons in freely behaving C. elegans. Journal of Neuroscience Methods. 206 (1), 78-82 (2012).
  23. Sugi, T., Ito, H., Nishimura, M., Nagai, K. H. C. elegans collectively forms dynamical networks. Nature Communications. 10 (1), 1-9 (2019).
check_url/kr/61626?article_type=t

Play Video

Cite This Article
Shigyou, K., Maeoka, H., Igarashi, R., Sugi, T. Calcium Imaging in Freely Behaving Caenorhabditis elegans with Well-Controlled, Nonlocalized Vibration. J. Vis. Exp. (170), e61626, doi:10.3791/61626 (2021).

View Video