Summary

使用高分辨率熔解分析检测 CALR 基因中的遗传变异

Published: August 26, 2020
doi:

Summary

高分辨率熔解分析(HRM)是遗传变异检测的灵敏快速解决方案。这取决于导致异质双链体改变熔化曲线形状的序列差异。通过梳理HRM和琼脂糖凝胶电泳,可以鉴定不同类型的遗传变异,如indels。

Abstract

高分辨率熔解分析(HRM)是基因分型和遗传变异扫描的强大方法。大多数HRM应用依赖于检测序列差异的饱和DNA染料,以及改变熔化曲线形状的异质双链体。需要出色的仪器分辨率和特殊的数据分析软件来识别识别变异或基因型的微小熔化曲线差异。在针对特定疾病(尤其是癌症)患者的特异性基因中,以及在费城染色体阴性骨髓增殖性肿瘤患者的 CALR 基因中,可以观察到具有不同频率的不同类型的遗传变异。目标基因中的单核苷酸变化,插入和/或缺失(indels)可以通过HRM分析检测到。不同类型遗传变异的鉴定主要基于qPCR HRM测定中使用的对照。然而,随着产物长度的增加,野生型和杂合子曲线之间的差异变小,遗传变异的类型更难确定。因此,当indels是目标基因中预期的流行遗传变异时,可以使用琼脂糖凝胶电泳等其他方法来澄清HRM结果。在某些情况下,不确定的结果必须通过标准 Sanger 测序重新检查/重新诊断。在这项回顾性研究中,我们将该方法应用于患有MPN的 JAK2 V617F阴性患者。

Introduction

钙质素基因(CALR)的体细胞遗传变异在2013年在骨髓增殖性肿瘤(MPN)患者中得到认可,如原发性血小板增多症和原发性骨髓纤维化1,2。从那时起,在CALR基因中发现了50多个遗传变异,诱导了+1(−1 + 2)帧移位3。两个最常见的CALR遗传变异是52 bp缺失(NM_004343.3(CALR):c.1099_1150del52,p.(Leu367Thrfs*46)),也称为1型突变,以及5 bp插入(NM_004343.3(CALR):c.1154_1155insTTGTC,p.(Lys385Asnfs*47)),也称为2型突变。这两个遗传变异代表了所有CALR遗传变异的80%。其他的已被归类为1型或2型相似,使用基于保存接近野生型CALR4的α螺旋的算法。在这里,我们介绍了一种用于CALR遗传变异检测的高灵敏度和快速方法,即高分辨率熔解分析方法(HRM)。该方法能够快速检测1型和2型遗传变异,这些变异代表了大多数CALR突变5。HRM于1997年与实时”聚合酶链反应”(qPCR)相结合引入,作为检测因子V Leiden6突变的工具。与代表黄金标准技术的Sanger测序相比,HRM是一种更灵敏且特异性更低的方法5。HRM方法是一种很好的筛选方法,可以快速分析大量样品,并具有巨大的成本效益5。这是一种在荧光染料存在下进行的简单PCR方法,不需要特定的技能。另一个好处是,该过程本身不会损坏或破坏分析的样品,这使我们能够在HRM程序7之后重复使用样品进行电泳或Sanger测序。唯一的缺点是有时很难解释结果。此外,HRM不能在非1型或2型突变的患者中检测到确切的突变8。在这些患者中,应进行Sanger测序(图1)。

HRM基于在饱和DNA荧光染料存在下对特定DNA区域的扩增,其掺入双链DNA(dsDNA)中。荧光染料在掺入dsDNA时会发光。在温度逐渐升高后,dsDNA分解成单链DNA,可以在熔融曲线上检测到荧光强度的突然降低。熔化曲线的形状取决于用于检测突变的DNA序列。将样品的熔化曲线与已知突变或野生型CALR的熔融曲线进行比较。不同的熔融曲线代表非类型1或类型29的不同突变。

通过HRM、琼脂糖凝胶电泳和测序方法检测 CALR 基因中体细胞遗传变异的算法(图1)10之前发表的回顾性研究中得到了应用和验证。

Protocol

该研究得到了斯洛文尼亚共和国医学伦理委员会的批准。所有程序都符合《赫尔辛基宣言》。 1. 基于荧光的定量实时荧光聚合酶链(qPCR)和HRM的qPCR后分析 将 材料表中 列出的引物重悬至100μM,不含无菌,RNase和DNase的H2O(见 材料表)。制作10μM工作浓度底漆。该协议中使用的引物在2之前发表。 按照制造商的?…

Representative Results

成功扩增的DNA感兴趣区域,荧光指数增加,超过周期15和35之间的阈值,并且所有重复样品和对照的定量周期(Cq)值非常窄(图2)是通过HRM分析可靠地鉴定遗传变异的先决条件。这是通过在qPCR HRM实验中使用荧光染色和等量DNA精确测定DNA来实现的(参见步骤1.2)。 图2 显示了目标DNA区域的成功扩增,其中所有样品和对照的Cq值都处于非常窄的间隔内。NT…

Discussion

DNA的高分辨率熔化是基因分型和遗传变异扫描的简单解决方案14。它取决于导致异质双面体改变熔化曲线形状的序列差异。在特定癌症患者群体1、2、15、16、10的基因特异性中可以观察到不同频率的不同类型的遗传变异。目的基因中的缺失或插入可以通过HRM?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢卢布尔雅那大学医学中心血液学系血液学系,内科专业血液学实验室的所有学术专家和员工。

Materials

E-Gel EX 4% Agarose Invitrogen, Thermo Fischer Scientific G401004
Fuorometer 3.0 QUBIT Invitrogen, Thermo Fischer Scientific Q33216
Invitrogen E-Gel iBase and E-Gel Safe Imager Combo Kit Invitrogen, Thermo Fischer Scientific G6465EU
MeltDoctor HRM MasterMix 2X Applied Biosystem, Thermo Fischer Scientific 4415440 Components: AmpliTaqGold 360 DNA Polymerase, MeltDoctor trade HRM dye, dNTP blend including dUTP, Magnesium salts and other buffer components, precisely formulated to obtain optimal HRM results
MicroAmp Fast 96-well Reaction Plate (0.1 mL) Applied Biosystems, Thermo Fischer Scientific 4346907
MicroAmp Optical adhesive film Applied Biosystems, Thermo Fischer Scientific 4311971
NuGenius Syngene NG-1045 Gel documentation systems
Primer CALRex9 Forward Eurofins Genomics Sequence: 5'GGCAAGGCCCTGAGGTGT'3 (High-Purity, Salt-Free)
Primer CALRex9 Reverse Eurofins Genomics Sequence: 5'GGCCTCAGTCCAGCCCTG'3 (High-Purity, Salt-Free)
QIAamp DNA Mini Kit QIAGEN 51306 DNA isolation kit with the buffer for DNA dilution.
Qubit Assay Tubes Invitrogen, Thermo Fischer Scientific Q32856
QUBIT dsDNA HS assay Invitrogen, Thermo Fischer Scientific Q32854
Trackit 100bp DNA Ladder Invitrogen, Thermo Fischer Scientific 10488058 Ladder consists of 13 individual fragments with the reference bands at 2000, 1500, and 600 bp.
ViiA7 Real-Time PCR System Applied Biosystems, Thermo Fischer Scientific 4453534
Water nuclease free VWR, Life Science 436912C RNase, DNase and Protease free water

References

  1. Nangalia, J., et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. New England Journal of Medicine. 369, 2391-2405 (2013).
  2. Klampfl, T., et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. New England Journal of Medicine. 369, 2379-2390 (2013).
  3. Vainchenker, W., Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 129, 667-679 (2017).
  4. Pietra, D., et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 30, 431-438 (2016).
  5. Lim, K. H., et al. Rapid and sensitive detection of CALR exon 9 mutations using high-resolution melting analysis. Clinica Chimica Acta. 440, 133-139 (2015).
  6. Lay, M. J., Wittwer, C. T. Real-time fluorescence genotyping of factor V leiden during rapid-cycle PCR. Clinical Chemistry. 43, 2262-2267 (1997).
  7. Vossen, R. H. A. M., Aten, E., Roos, A., Den Dunnen, J. T. High-resolution melting analysis (HRMA) – More than just sequence variant screening. Human Mutation. 30, 860-866 (2009).
  8. Barbui, T., Thiele, J., Vannucchi, A. M., Tefferi, A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer Journal. 5, 337-338 (2015).
  9. Reed, G. H., Wittwer, C. T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry. 50, 1748-1754 (2004).
  10. Belcic Mikic, T., Pajic, T., Sever, M. CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms. Scientific Reports. 9, 19838 (2019).
  11. Invitrogen, Thermo Fischer Scientific. . QubitTM dsDNA HS Assay Kits. Manual (MAN0002326, MP32851, Revision: B.0). , (2015).
  12. Applied Biosystems, Thermo Fisher Scientific. . High Resolution Melt Module for ViiA TM 7 Software v1. Getting Started Guide. Part Number 4443531 Rev. B. , (2011).
  13. Applied Biosystems, Thermo Fischer Scientific. . High-Resolution Melt Analysis for Mutation Scanning Prior to Sequencing. Application Note. , (2010).
  14. Reed, G. H., Kent, J. O., Wittwer, C. T. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics. 8, 597-608 (2007).
  15. Gonzalez-Bosquet, J., et al. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers. PLoS One. 6, 14522 (2011).
  16. Van Der Stoep, N., et al. Diagnostic guidelines for high-resolution melting curve (HRM) analysis: An interlaboratory validation of BRCA1 mutation scanning using the 96-well LightScanner. Human Mutation. 30, 899-909 (2009).
  17. Singdong, R., et al. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms. Asian Pacific Journal of Cancer Prevention. 17, 4647-4653 (2016).
  18. Erali, M., Wittwer, C. T. High resolution melting analysis for gene scanning. Methods. 50, 250-261 (2010).
  19. Bilbao-Sieyro, C., et al. High Resolution Melting Analysis: A Rapid and Accurate Method to Detect CALR Mutations. PLoS One. 9, 103511 (2014).
  20. Słomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G., Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. International Journal of Molecular Sciences. 18, 2316 (2017).
  21. Li, X., et al. Comparison of three common DNA concentration measurement methods. Analytical Biochemistry. 451, 18-24 (2014).
  22. Voytas, D. Agarose Gel Electrophoresis. Current Protocols in Immunology. 2, (1992).
  23. Lee, P. Y., Costumbrado, J., Hsu, C. Y., Kim, Y. H. Agarose Gel Electrophoresis for the Separation of DNA Fragments. Journal of Visualized Experiments. , e3923 (2012).
  24. Helling, R. B., Goodman, H. M., Boyer, H. W. Analysis of Endonuclease R·EcoRI Fragments of DNA from Lambdoid Bacteriophages and Other Viruses by Agarose-Gel Electrophoresis. Journal of Virology. , 1235-1244 (1974).
check_url/kr/61642?article_type=t

Play Video

Cite This Article
Pajič, T., Belčič Mikič, T., Podgornik, H., Klun, J., Šućurović, S., Zver, S., Sever, M. Genetic Variant Detection in the CALR gene using High Resolution Melting Analysis. J. Vis. Exp. (162), e61642, doi:10.3791/61642 (2020).

View Video