Summary

在大鼠中生成电机Tic表达的急性和慢性实验模型

Published: May 27, 2021
doi:

Summary

我们提出在行为自由的老鼠中生成急性和慢性抽搐表达实验模型的协议。模型基于纹状管管植入和随后的GABAA 拮抗剂应用。急性模型使用瞬时注射,而慢性模型则通过皮下植入的迷你渗透泵使用长时间输液。

Abstract

运动抽搐是突然,快速,反复的运动,是图雷特综合征和其他抽搐障碍的关键症状。抽搐一代的病理生理学与基底结节的异常抑制有关,特别是其主要输入结构,纹状体。在啮齿动物和非人类灵长类动物的动物模型中,GABAA 拮抗剂(如双胆碱和皮罗毒素)在纹状体的运动部位的局部应用会导致局部抑制,导致运动抽搐的表达。

在这里,我们介绍了大鼠运动抽搐的急性和慢性模型。在急性模型中,通过植入背纹状体的管状管进行双库线微注射,可引起持续长达一小时的短时间抽搐的表达。慢性模型是一种替代方法,通过亚皮下微渗透泵连续输注双核素,使tic表达延长到几天甚至几周的周期。

这些模型使整个皮质-基底神经通路能够研究tic代的行为和神经机制。这些模型支持植入额外的录音和刺激设备,除了注射罐,从而允许各种各样的用途,如电和光学刺激和电生理记录。每种方法都有不同的优点和缺点:急性模型能够比较运动运动特性和抽搐表达前、中、后相应的电生理变化,以及短期调节器对tic表达的影响。这种急性模型是简单的建立:然而,它仅限于很短的时间。慢性模型虽然更为复杂,但使长期研究抽搐动力学和行为对tic表达的影响变得可行。因此,实证查询的类型驱动了这两种互补的tic表达模型之间的选择。

Introduction

抽搐是图雷特综合征 (TS) 和其他抽搐障碍的决定性症状。Tics 被描述为突然、快速、反复的运动(运动抽搐),或发声(声乐抽搐)1。Tic 表达式通常在其时间(频率)2和空间(强度、身体位置)3个属性中波动,在多个时间尺度(小时、天、月和年)上波动。这些变化受到不同因素的影响,如环境特征4、5、行为状态6、7、自愿和临时抑制8。

虽然管理运动抽搐的神经元机制尚未完全了解,但越来越多的理论和实验研究为其性质提供了新的证据。目前,tic代的病理生理学被认为涉及皮质-基底神经带(CBG)环,特别是与纹状体的异常抑制有关,主要基底神经痛输入核10、11、12。先前对啮齿动物和灵长类动物的研究表明,纹状体可以不受不同GABAA拮抗剂的局部应用,如双库林和皮罗毒素13,14,15,16,17,18。这种药理干预导致在注射的逆向侧的瞬态运动抽搐表达,从而建立一个强大的急性模型的抽搐紊乱与面部和构造的有效性。急性模型易于诱导,使研究短期调制的影响成为可能,如电刺激和光学刺激与电生理和运动记录在抽搐表达之前、期间和之后。然而,急性模型仅限于注射后的短时间。基于急性模型,我们最近提出了一个长期模型的抽搐生成大鼠,利用长期,固定速率注入双核素纹状体通过皮下植入的迷你渗透泵19。此模型将抽搐表达的周期延长至多天/周。在很长一段时间内,双库林的不断释放使得可以检查各种因素的影响,如药理治疗和行为状态对tic表达。

在这里,我们提出在大鼠中产生急性和慢性抽搐表达模型的协议。作为特定研究问题的一个函数,协议允许对参数进行微调,包括单边和双边植入、抽搐部位(根据纹状体的同位素组织)18 和植入罐角(取决于其他植入设备的位置)。慢性模型中使用的方法部分基于商业产品,但具有适合 tic 模型的关键调整。本文详细介绍了定制这些 tic 模型所需的调整。

Protocol

所有程序均由机构动物护理和使用委员会批准和监督,并遵守《国家实验室动物护理和使用卫生指南》和《巴伊兰大学研究中实验室动物使用和护理准则》。该议定书已得到卫生部实验室动物实验国家委员会的批准。 注:本协议使用雌性长埃文斯大鼠(急性和慢性模型)和雌性斯普拉格道利大鼠(急性模型)年龄3-10个月,280-350克。应仔细测试这些模型在其他菌株、重量或年…

Representative Results

上图介绍了为大鼠的抽搐诱导生成急性和慢性模型的协议。协议涵盖手术和实验的充分准备(图1 为急性模型, 图2 为慢性模型)。将双库林应用于纹状体的运动区域,导致持续运动抽搐的表达。Tics 出现在应用的对流侧,其特征是短暂且重复的肌肉收缩。双腹线应用于纹状体的前部位后,抽搐通常表现在大鼠的前肢、头部和/或下颚,而在注射后,抽?…

Discussion

在这份手稿中,我们详细介绍了在行为自由的老鼠中进行抽搐诱导的急性和慢性模型的协议。这些协议描述了所有组件的准备、手术和实验过程,这些部件可以适应定制以满足特定研究需求。这些模型的主要原理是将双库林直接局部应用到纹状体的运动区域,已知在10、11、12等病理生理学中起着关键作用。在这两种型号中,双…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究部分得到了以色列科学基金会(ISF)赠款(297/18)的支持。作者感谢M.布朗菲尔德建立急性啮齿动物模型和M.以色列什维利的评论。

Materials

Anchor screws Micro Fasteners SMPPS0002 #0 x 1/8 – Pan Head Sheet Metal Screws
Bicuculline methiodide Sigma Aldrich 14343
Cyanoacrylate (CA) accelerator Zap PT29
Cyanoacrylate (CA) glue BSI IC-2000 This glue was found to be stronger than others
Dental cement Coltene H00322 Hygenic Perm Repair Material Reline Resin Self Cure
Glue gel Loctite Ultra Gel Control
Hemostat WPI 501242 Any hemostat sized approximately 14 cm would be sufficient
Hypo-tube, extra-thin wall 25G Component supply company HTX-25X
Hypo-tube, regular wall 22G Component supply company HTX-22R
Hypo-tube, regular wall 30G Component supply company HTX-30R
Infusion pump machine New Era Pump Systems NE-1000
Mini-osmotic pump ALZET 2001 1.0µl per hour, 7 days
PE compatible adhesive CEYS Special difficult plastics (suitable for PE)
PE-10 Catheter Tubing ALZET PE-10 ID = 0.28mm, OD = 0.61mm
Precision glass microsyringe, 10µl Hamilton 80065 1701 RNR 10µl syr (22s/51/3)
Tissue adhesive 3M 1469Sb Vetbond
Tubing-adapter CMA 3409500
Tygon micro bore tubing, 0.02 inch ID * 0.06 OD Component supply company TND80-020
Wire 0.005-inch Component supply company GWX-0050
Wire 0.013-inch Component supply company GWX-0130

References

  1. American Psychiatric Association. DSM-5. American Psychiatric Association. , (2013).
  2. Peterson, B. S., Leckman, J. F. The temporal dynamics of tics in Gilles de la Tourette syndrome. Biol.Psychiatry. 44, 1337-1348 (1998).
  3. Ganos, C., et al. The somatotopy of tic inhibition: where and how much. Movement Disorders. , (2015).
  4. Barnea, M., et al. Subjective versus objective measures of tic severity in Tourette syndrome – The influence of environment. Psychiatry Research. 242, 204-209 (2016).
  5. Silva, R. R., Munoz, D. M., Barickman, J., Friedhoff, A. J. Environmental Factors and Related Fluctuation of Symptoms in Children and Adolescents with Tourette’s Disorder. Journal of Child Psychology and Psychiatry. 36 (2), 305-312 (1995).
  6. Rothenberger, A., et al. Sleep and Tourette syndrome. Advances in Neurology. 85, 245-259 (2001).
  7. Conelea, C. a., Woods, D. W., Brandt, B. C. The impact of a stress induction task on tic frequencies in youth with Tourette Syndrome. Behaviour Research and Therapy. 49 (8), 492-497 (2011).
  8. Ganos, C., Rothwell, J., Haggard, P. Voluntary inhibitory motor control over involuntary tic movements. Movement Disorders. 33 (6), 937-946 (2018).
  9. Yael, D., Vinner, E., Bar-Gad, I. Pathophysiology of tic disorders. Movement Disorders. 30 (9), 1171-1178 (2015).
  10. Kurvits, L., Martino, D., Ganos, C., Eddy, C. M. Clinical Features That Evoke the Concept of Disinhibition in Tourette Syndrome. Frontiers in Psychiatry. 11, 1-10 (2020).
  11. Mink, J. W. Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatric Neurology. 25, 190-198 (2001).
  12. Bronfeld, M., Bar-Gad, I. Tic disorders: what happens in the basal ganglia. The Neuroscientist. 19 (1), 101-108 (2013).
  13. Tarsy, D., Pycock, C. J., Meldrum, B. S., Marsden, C. D. Focal contralateral myoclonus produced by inhibition of GABA action in the caudate nucleus of rats. Brain. 101 (1), 143-162 (1978).
  14. Crossman, A. R., Mitchell, I. J., Sambrook, M. A., Jackson, A. Chorea and Myoclonus in the Monkey Induced By Gamma-Aminobutyric Acid Antagonism in the Lentiform Complex. Brain. 111 (5), 1211-1233 (1988).
  15. McCairn, K. W., Bronfeld, M., Belelovsky, K., Bar-Gad, I. The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain. 132 (8), 2125-2138 (2009).
  16. Worbe, Y., et al. Behavioral and movement disorders induced by local inhibitory dysfunction in primate striatum. Cerebral Cortex. 19 (8), 1844-1856 (2009).
  17. Pogorelov, V., Xu, M., Smith, H. R., Buchanan, G. F., Pittenger, C. Corticostriatal interactions in the generation of tic-like behaviors after local striatal disinhibition. Experimental Neurology. 265, 122-128 (2015).
  18. Bronfeld, M., Yael, D., Belelovsky, K., Bar-Gad, I. Motor tics evoked by striatal disinhibition in the rat. Frontiers in Systems Neuroscience. 7, 50 (2013).
  19. Vinner, E., Israelashvili, M., Bar-Gad, I. Prolonged striatal disinhibition as a chronic animal model of tic disorders. Journal of Neuroscience Methods. 292, 20-29 (2017).
  20. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. 6, (2007).
  21. Flecknell, P. Analgesia and Post-Operative Care. Laboratory Animal Anaesthesia. , (2016).
  22. Israelashvili, M., Bar-Gad, I. Corticostriatal divergent function in determining the temporal and spatial properties of motor tics. Journal of Neuroscience. 35 (50), 16340-16351 (2015).
  23. Bronfeld, M., Belelovsky, K., Bar-Gad, I. Spatial and temporal properties of tic-related neuronal activity in the cortico-basal ganglia loop. Journal of Neuroscience. 31 (24), 8713-8721 (2011).
  24. McCairn, K. W., et al. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics. Neuron. 89 (2), 300-307 (2016).
  25. Rizzo, F., et al. Aripiprazole Selectively Reduces Motor Tics in a Young Animal Model for Tourette’s Syndrome and Comorbid Attention Deficit and Hyperactivity Disorder. Frontiers in Neurology. 9, 1-11 (2018).
  26. Vinner, E., Matzner, A., Belelovsky, K., Bar-gad, I. Dissociation of tic expression from its neuronal encoding in the striatum during sleep. bioRxiv. , (2020).
  27. Webster, K. E. Cortico-striate interrelations in the albino rat. Journal of Anatomy. 95, 532-544 (1961).
  28. Ebrahimi, A., Pochet, R., Roger, M. Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat. Neuroscience Research. 14, 39-60 (1992).
  29. Brown, L. L., Sharp, F. R. Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. Brain Research. 686, 207-222 (1995).
  30. Brown, L. L., Smith, D. M., Goldbloom, L. M. Organizing principles of cortical integration in the rat neostriatum: Corticostriate map of the body surface is an ordered lattice of curved laminae and radial points. Journal of Comparative Neurology. 392 (4), 468-488 (1998).
  31. Yael, D., Tahary, O., Gurovich, B., Belelovsky, K., Bar-Gad, I. Disinhibition of the nucleus accumbens leads to macro-scale hyperactivity consisting of micro-scale behavioral segments encoded by striatal activity. The Journal of Neuroscience. , 3120 (2019).
  32. Obeso, J. A., Rothwell, J. C., Marsden, C. D. The spectrum of cortical myoclonus. From focal reflex jerks to spontaneous motor epilepsy. Brain. 108, 124-193 (1985).
  33. Bronfeld, M., et al. Bicuculline-induced chorea manifests in focal rather than globalized abnormalities in the activation of the external and internal globus pallidus. Journal of Neurophysiology. 104 (6), 3261-3275 (2010).
check_url/kr/61743?article_type=t

Play Video

Cite This Article
Vinner, E., Belelovsky, K., Bar-Gad, I. Generating Acute and Chronic Experimental Models of Motor Tic Expression in Rats. J. Vis. Exp. (171), e61743, doi:10.3791/61743 (2021).

View Video