Summary

使用三维共培养系统NICO-1评估卵巢癌干细胞样细胞的血管遗传特性

Published: December 05, 2020
doi:

Summary

卵巢癌干细胞 (OCSC) 负责癌症的发生、复发、治疗耐药性和转移。OCSC血管生态位被认为可促进OCSC的自我更新,导致化学耐药性。该协议为体外建立可重复的OCSC血管生态位模型提供了基础

Abstract

癌症干细胞(CSC)位于支持性生态位中,构成由相邻基质细胞,血管和细胞外基质组成的微环境。CSC参与内皮发育的能力构成了一个重要特征,直接有助于对肿瘤发生和肿瘤转移机制的一般理解。这项工作的目的是建立一种可重复的方法,以研究卵巢癌干细胞(OCSC)的肿瘤起始能力。本文使用体外共培养模型NICO-1研究了内皮细胞和OCSC之间的新生血管形成机制以及内皮细胞的形态变化。该协议允许以时程方式可视化OCSC周围的新生血管形成步骤。该技术可以提供有关OCSC在肿瘤转移中的血管生成特性的见解。

Introduction

卵巢癌是全球女性第八大常见恶性肿瘤,每年约有 300,000 例新诊断,估计有 180,000 例死亡1。在初步诊断时,卵巢癌通常出现严重症状,约75%的患者已经处于III-IV期。因此,卵巢癌的5年生存率为<30%,死亡率在妇科癌症中最高2,卵巢癌的治疗效率高度依赖于减瘤手术的成功完成、化疗耐药和初始治疗后复发等临床因素。

卵巢癌组织是分层组织的,并非所有肿瘤成分都能够同样产生后代。唯一能够自我更新并产生异质性肿瘤细胞群的细胞被认为代表癌症干细胞(CSC)3。CSC自我更新和肿瘤起始伴随着促进血管生成以重塑其肿瘤微环境,以维持支持性生态位。然而,以前的模型不能用于体外分析,因为培养来自临床样品的CSC的可重复性有限,因为多次传代后球状体的破坏。最近,已经开发了从患者身上培养CSC的实验方法,用于多种应用4567特别是,通过利用CSCs在无血清培养基的超低附着板中形成球状体来生长的特性,诱导培养的CSC表达在具有多谱系分化潜力的正常肿瘤细胞中未表达的干细胞表面标志物89

最近的数据表明,在腹膜上可视化为播散的休眠卵巢(O)CSC的持续存在与其作为复发性肿瘤的再生有关10。因此,了解OCSC的分子和生物学特征可以有效地靶向和根除这些细胞,从而产生潜在的肿瘤缓解。特别是,关于CSC在血管生成中的作用的细胞和分子机制特征知之甚少11。因此,在本协议中,我们在体外环境中使用患者来源的OCSCs,使用共培养模型研究内皮细胞的血管生成特性,该模型可能模拟CSC和内皮细胞的肿瘤微环境在临床环境中转移部位。最终,由于新生血管形成是支持肿瘤生长和转移所必需的关键过程,因此更好地了解其机制将允许在转移部位为OCSC开发一种新的靶向疗法。

在这里,我们提出了一个协议,以时间过程的方式可视化围绕CSC的新生血管形成步骤。该方案的优点包括允许使用3D共培养系统NICO-1进行完全可重复的研究,从而允许观察OCSC衍生的肿瘤起始能力在内皮细胞血管生成过程中对患者的影响。

Protocol

所有程序均根据人类福利伦理委员会批准的协议执行。所有患者都为其样本的研究用途提供了书面知情同意书,本研究的组织收集和使用得到了帝京大学人类基因组基因分析研究伦理委员会的批准。 1. 在 2 级生物安全柜中分离和培养卵巢癌和腹水患者的卵巢癌干细胞 (OCSC) 从通过穿刺获得的人卵巢癌腹水中分离癌症干细胞。从患者身上收集至少 100-250 mL 的腹水,以?…

Representative Results

我们收集了晚期卵巢癌患者在手术或穿刺过程中获得的腹水,以便对球状体进行长期稳定的培养。在这里,我们介绍了卵巢CSC的长期球状体培养案例,称为CSC1和CSC2。两种细胞系具有相同的诊断和组织学特征。OCSC与内皮细胞相互作用的机制作用仍然是诱导OCSC周围内皮细胞新生血管所必需的。因此,我们旨在阐明转移部位CSC血管生态位发育的过程。我们使用体外共培养模型…

Discussion

所提出的协议描述了如何在体外环境中模拟OCSC的肿瘤微环境。该方法的主要组成部分构成了使用NICO-1系统(一种间接Transwell共培养系统)获得的高度可重复的共培养模型。许多目前可用的共培养模型检查了直接细胞-细胞接触对共培养细胞群的影响12,13,1415,1617<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本文部科学省的科学研究C补助金(K.N.拨款号19K09834)的支持。

Materials

0.025% Trypsin  Thermo R001100
10 mL Pipet Thermo 170356N
1250 µL Pipet tip QSP T112XLRS-Q
15 mL tube Nunc 339650
200 µL Pipet tip QSP T110RS-NEW
2-Mercaptoethanol Thermo (Gibco) 21985023
5 mL Pipet Thermo 170366N
50 mL tube Corning 430290
AccuMAX Innovative Cell Technologies AM105
BioCoatTM Collagen I 60mm Dish Corning 356401
Centrifuge KUBOTA 2800
Costar 6 Well Clear Flat Bottom Ultra Low Attachment Multiple Well Plates Corning 3471
Endothelial Cell Growth Medium 2  PromoCell C-22011 
Ethanol WAKO 057-00456
FGF-Basic Thermo (Gibco) PHG0021
Histodenz SIGMA D2158
HUEhT-1 cell JCRB Cell Bank JCRB1458
ICCP Filter 0.6 µm Ginrei Lab. 2525-06
Insulin, human SIGMA (Roche) 11376497001
Luminometer PerkinElmer ARVO MX-flad
Matrigel Matrix Corning 356234
Microscope Yokogawa CQ-1
NICO-1 Ginrei Lab. 2501-02
OptiPlate-96 PerkinElmer 6005290
P1000 Pipet Gilson F123602
P200 Pipet Gilson F123601
PBS Thermo (Gibco) 14190-144
StemPro hESC SFM Thermo (Gibco) A1000701
Transfer Pipet FALCON 357575
Y-27632 WAKO 253-00513

References

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA, a Cancer Journal for Clinicians. 68, 394-424 (2018).
  2. Lengyel, E. Ovarian cancer development and metastasis. American Journal of Pathology. 177 (3), 1053-1064 (2010).
  3. Lytle, N. K., Barber, A. G., Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer. 18 (11), 669-680 (2018).
  4. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes and Development. 17 (10), 1253-1270 (2003).
  5. Lonardo, E., et al. Nodal/Activin signaling drives selfrenewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 9 (5), 433-446 (2011).
  6. Ricci-Vitiani, L., et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 445 (7123), 111-115 (2007).
  7. Ohata, H., et al. Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. 암 연구학. 72 (19), 5101-5110 (2012).
  8. Ishiguro, T., et al. Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity. 암 연구학. 76 (1), 150-160 (2016).
  9. Singh, S. K., et al. Identification of a cancer stem cell in human brain tumors. 암 연구학. 63 (18), 5821-5828 (2003).
  10. Zong, X., Nephew, K. P. Ovarian cancer stem cells: role in metastasis and opportunity for therapeutic targeting. Cancers (Basel). 11 (7), 934 (2019).
  11. Lizárraga-Verdugo, E., et al. Cancer stem cells and its role in angiogenesis and vasculogenic mimicry in gastrointestinal cancers. Frontiers in oncology. 10, 413 (2020).
  12. Renaud, J., Martinoli, M. G. Development of an insert co-culture system of two cellular types in the absence of cell-cell contact. Journal of Visualized Experiments. (113), e54356 (2016).
  13. Richardson, S. M., et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 24 (3), 707-716 (2006).
  14. Plotnikov, E. Y., et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine. 12 (5), 1622-1631 (2008).
  15. Sheng, H., et al. A critical role of IFN-gamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research. 18 (8), 846-857 (2008).
  16. Csaki, C., Matis, U., Mobasheri, A., Shakibaei, M. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochemistry and Cell Biology. 131 (2), 251-266 (2009).
  17. Aguirre, A., Planell, J. A., Engel, E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochemical and Biophysical Research Communications. 400 (2), 284-291 (2010).
  18. Proffen, B. L., Haslauer, C. M., Harris, C. E., Murray, M. M. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connective Tissue Research. 54 (1), 14-21 (2013).
  19. Goers, L., Freemont, P., Polizzi, K. M. Co-culture systems and technologies: taking synthetic biology to the next level. Journal of the Royal Society & Interface. 11 (96), 20140065 (2014).
  20. De Palma, M., Biziato, D., Petrova, T. Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer. 17, 457-474 (2017).
  21. Burger, R., et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New England Journal of Medicine. 365, 2473-2483 (2011).
  22. Goel, H., Mercurio, A. VEGF targets the tumour cell. Nature Reviews Cancer. 13, 871-882 (2013).
  23. Yu, L., et al. Interaction between bevacizumab and murine VEGF-A: a reassessment. Investigative Ophthalmology and Visual Science. 49 (2), 522-527 (2008).
check_url/kr/61751?article_type=t

Play Video

Cite This Article
Miyagawa, Y., Nagasaka, K., Yamawaki, K., Mori, Y., Ishiguro, T., Hashimoto, K., Koike, R., Fukui, S., Sugihara, T., Ichinose, T., Hiraike, H., Kido, K., Okamoto, K., Enomoto, T., Ayabe, T. Evaluating the Angiogenetic Properties of Ovarian Cancer Stem-Like Cells using the Three-Dimensional Co-Culture System, NICO-1. J. Vis. Exp. (166), e61751, doi:10.3791/61751 (2020).

View Video