Summary

Isolering af levedygtige adipocytter og stromal vaskulær fraktion fra humant visceralt fedtvæv, der er egnet til RNA-analyse og makrofagfænotypning

Published: October 27, 2020
doi:

Summary

Denne protokol tilvejebringer en effektiv kollagenasefordøjelsesmetode til isolering af levedygtige adipocytter og stromale vaskulære fraktion-SVF-celler fra humant visceralt fedt i en enkelt proces, herunder metode til opnåelse af RNA af høj kvalitet fra adipocytter og fænotypificering af SVF-makrofager gennem farvning af flere membranbundne markører til analyse ved flowcytometri.

Abstract

Visceralt fedtvæv (VAT) er et aktivt metabolisk organ, der hovedsageligt består af modne adipocytter og stromale vaskulære fraktionsceller (SVF), som frigiver forskellige bioaktive molekyler, der styrer metaboliske, hormonelle og immunprocesser; I øjeblikket er det uklart, hvordan disse processer reguleres i fedtvævet. Derfor er udviklingen af metoder, der evaluerer hver cellepopulations bidrag til fedtvævets patofysiologi, afgørende. Denne protokol beskriver isolationstrinnene og giver de nødvendige fejlfindingsretningslinjer for effektiv isolering af levedygtige modne adipocytter og SVF fra humane momsbiopsier i en enkelt proces ved hjælp af en enzymatisk nedbrydningsteknik for kollagenase. Desuden er protokollen også optimeret til at identificere makrofagundergrupper og udføre moden adipocyt-RNA-isolering til genekspressionsundersøgelser, hvilket gør det muligt at udføre undersøgelser, der dissekerer interaktionen mellem disse cellepopulationer. Kort fortalt vaskes momsbiopsier, hakkes mekanisk og fordøjes for at generere en enkeltcellesuspension. Efter centrifugering isoleres modne adipocytter ved flotation fra SVF-pelleten. RNA-ekstraktionsprotokollen sikrer et højt udbytte af total RNA (inklusive miRNA’er) fra adipocytter til downstream-ekspressionsassays. Samtidig bruges SVF-celler til at karakterisere makrofagundergrupper (pro- og antiinflammatorisk fænotype) gennem flowcytometrianalyse.

Introduction

Hvidt fedtvæv består ikke kun af fedtceller eller adipocytter, men også af en fedtfri cellefraktion kendt som stromal vaskulær fraktion (SVF), som indeholder en heterogen cellepopulation bestående af makrofager, andre immunceller som regulatoriske T-celler (Tregs) og eosinofiler, preadipocytter og fibroblaster, omgivet af vaskulært væv og bindevæv 1,2. Fedtvæv (AT) betragtes nu som et organ, der regulerer fysiologiske processer relateret til metabolisme og betændelse gennem adipokiner, cytokiner og mikroRNA’er produceret og frigivet af forskellige celler i vævet med autokrine, parakrin og endokrine virkninger 3,4. Hos mennesker omfatter hvidt fedtvæv det subkutane fedtvæv (SAT) og det viscerale fedtvæv (VAT) med vigtige anatomiske, molekylære, cellulære og fysiologiske forskelle mellem dem 2,5. SAT repræsenterer op til 80% af human AT, mens moms er placeret i bukhulen, hovedsageligt i mesenteriet og omentum, der metabolisk er mere aktiv6. Desuden er moms et endokrin organ, der udskiller mediatorer med en betydelig indvirkning på kropsvægt, insulinfølsomhed, lipidmetabolisme og inflammation. Derfor fører momsakkumulering til abdominal fedme og fedmerelaterede sygdomme såsom type 2-diabetes, metabolisk syndrom, hypertension og risiko for hjerte-kar-sygdomme, hvilket repræsenterer en bedre forudsigelse for fedmeassocieret dødelighed 6,7,8,9.

Under homeostatiske forhold samarbejder adipocytter, makrofager og de andre immunceller for at opretholde momsmetabolismen gennem udskillelsen af antiinflammatoriske mediatorer10. Imidlertid fremmer overdreven momsudvidelse rekrutteringen af aktiverede T-celler, NK-celler og makrofager. Faktisk er forholdet mellem makrofagerne i magert moms 5%, mens dette forhold stiger op til 50% i fedme, med makrofagpolarisering fra antiinflammatorisk til proinflammatorisk fænotype, hvilket genererer et kronisk inflammatorisk miljø10,11.

Som en konsekvens af fedmepandemien er der opstået et forbløffende antal rapporter, der behandler forskellige momsforskningsemner, herunder adipocytbiologi, epigenetik, inflammation, endokrine egenskaber og nye områder som ekstracellulære vesikler, blandt andet 8,10,12,13. Men selvom momsmiljøet er defineret ved krydstale mellem adipocytter og de residente eller ankommende makrofager, har de fleste undersøgelser kun fokuseret på en cellepopulation, og der er knappe oplysninger om interaktionen mellem disse celler i moms og deres patofysiologiske konsekvenser11,14. Desuden blev værdifulde undersøgelser, der adresserede samspillet mellem adipocyt og makrofag i AT, udført ved hjælp af cellelinjer, der manglede in vivo-primingbetingelserne 11,14,15. En passende strategi til at dissekere disse cellers interaktion eller særlige bidrag i moms kræver isolering af begge celletyper fra den samme fedtbiopsi for at udføre in vitro-assays, der afspejler så ens som muligt de in vivo-egenskaber, der regulerer momsmetabolismen.

Selvom de ikke-enzymatiske dissociationsmetoder baseret på mekaniske kræfter til at bryde AT sikrer minimal manipulation, kan disse metoder ikke bruges, hvis målet er at studere SVF-celler, da de har lavere effektivitet i cellegendannelse og lav cellelevedygtighed sammenlignet med enzymatiske metoder, og der er behov for et større volumen væv16,17. Enzymatisk fordøjelse ved hjælp af kollagenase er en skånsom metode, der tillader tilstrækkelig fordøjelse af kollagen og ekstracellulære matrixproteiner af fibrøst væv såsom WAT18 og bruges ofte, når trypsin er ineffektivt eller skadeligt19. Protokollen giver grundlæggende retningslinjer for fejlfinding for effektiv isolering af levedygtige modne adipocytter og SVF-celler fra humane momsbiopsier i en enkelt proces ved hjælp af en enzymatisk nedbrydningsteknik for kollagenase, der giver information for at sikre høje udbytter (mængde, renhed og integritet) af total RNA fra modne adipocytter, herunder mikroRNA’er, til downstream-ekspressionsapplikationer. Samtidig er protokollen optimeret til at identificere makrofagundergrupper fra SVF-celler gennem farvning af flere membranbundne markører til yderligere analyse ved flowcytometri20.

Protocol

Denne protokol blev godkendt af IRB ved Instituto Nacional de Perinatologia (212250-3210-21002-06-15). Deltagelse var frivillig, og alle de tilmeldte kvinder underskrev den informerede samtykkeformular. 1. Opsamling af visceralt fedtvæv Få momsbiopsier gennem delvis omenektomi under kejsersnit fra raske voksne kvinder med singletongraviditeter på sigt uden arbejdskraft. Efter livmoderlukning og hæmostase, fortsæt med at identificere større omentum og udvide det på en…

Representative Results

Denne protokol beskriver en enzymatisk metode, der anvender kollagenasefordøjelse efterfulgt af differentiel centrifugering til i en enkelt proces at isolere levedygtige modne adipocytter og SVF-celler fra momsbiopsier opnået fra raske gravide kvinder efter delvis omentektomi. I dette tilfælde bruger vi adipocytterne til RNA-ekstraktion og SVF til makrofagfænotypning. RNA-ekstraktionsprotokollen gjorde det muligt at opnå RNA med en passende renhed, høj integritet og mikroRNA’er fra modne…

Discussion

Moms spiller en afgørende rolle i metabolisk regulering og inflammation. Stigende interesse for adipocytters og immuncellers rolle i kronisk inflammation forbundet med fedme har ført til udvikling af forskellige teknikker til at adskille SVF og fedtceller, der er til stede i AT. Imidlertid tillader de fleste teknikker ikke at opnå disse to forskellige sæt celler, der er levedygtige til downstream-applikationer fra den samme momsbiopsi i en enkelt procedure, hvilket kan være afgørende for undersøgelser vedrørende …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne undersøgelse blev støttet af Instituto Nacional de Perinatologia (bevillingsnumre: 3300-11402-01-575-17 og 212250-3210-21002-06-15) og CONACyT, Fondo Sectorial de Investigacion en Salud y Seguridad Social (FOSISS) (bevillingsnummer 2015-3-2-61661).

Materials

0.2 mL PCR tubes Axygen PCR-02-C RNase, DNase free and nonpyrogenic
1.5 mL microcentrifuge tubes Axygen MCT-150-C RNase, DNase free and nonpyrogenic
10 mL serological pipettes Corning CLS4101-50EA Individually plastic wrapped
10 µL universal pipet tip Axygen T-300-L-R RNase, DNase free and nonpyrogenic
10 µL universal pipet tip Axygen T-300-R-S RNase, DNase free and nonpyrogenic
1000 µL universal pipet tip Axygen T-1000-B-R RNase, DNase free and nonpyrogenic
2.0 mL microcentrifuge tube Axygen MCT-200-C RNase, DNase free and nonpyrogenic
200 µL universal pipet tip Axygen T-200-Y-R RNase, DNase free and nonpyrogenic
2100 Bioanalyzer Instrument Agilent G2939BA
2101 Bioanalyzer PC Agilent G2953CA 2100 Expert Software pre-installed in PC
5 ml Round Bottom Polystyrene Test Tube Corning 352003  Snap cap, sterile
50 mL centrifuge tubes Corning CLS430828-100EA Polipropilene, conical bottom and sterile
Acid-guanidinium-phenol based reagent Zymo Research R2050-1-200 TRI Reagent or similar
Agilent RNA 6000 Nano Kit Agilent 5067-1511
Agilent Small RNA Kit Agilent 5067-1548
APC/Cy7 anti-human CD14 Antibody BioLegend 325620 0.4 mg/106 cells, present on monocytes/macrophages, clone HCD14
Baker 250 ml, non sterile
Bovine serum albumin Sigma-Aldrich A3912-100G Heat shock fraction, pH 5.2, ≥96%
Chip priming station Agilent 5065-9951
Collagenase type II Gibco 17101-015 Powder
D-(+)-Glucose Sigma-Aldrich G8270-100G Powder
Direct-zol RNA Miniprep Zymo Research R2051 Supplied with 50 mL TRI reagen
Dissecting forceps Steel, serrated jaws and round ends
Dissection tray Stainless steel
Ethyl alcohol Sigma-Aldrich E7023-500ML 200 proof, for molecular biology
FACS Flow Sheath Fluid BD Biosciences 342003
FACS Lysing Solution BD Biosciences 349202
FACSAria III Flow Cytometer/Cell Sorter BD Biosciences 648282
FASCDiva Software BD Biosciences 642868 Software v6.0 pre-installed
Hemacytometer Sigma Z359629-1EA
Manual cell counter
Mayo dissecting scisors Stainless steel
Microcentrifuge Adjustable temperature
Nanodrop spectrophotometer Thermo Scientific ND2000LAPTOP
Orbital shaker Adjustable temperature and speed
P10 variable volume micropipette  Thermo Scientific-Finnpipette 4642040 1 to 10 μL
P1000 variable volume micropipette  Thermo Scientific-Finnpipette 4642090 100 to 1000 μL
P2 variable volume micropipette  Thermo Scientific-Finnpipette 4642010 0.2 to 2 μL
P200 variable volume micropipette  Thermo Scientific-Finnpipette 4642080 20 to 200 μL
PCR tube storage rack Axygen R96PCRFSP
PE/Cy5 anti-human HLA-DR Antibody BioLegend 307608 0.0625 mg/106 cells, present on macrophages, clone L243
PE/Cy7 anti-human CD45 Antibody BioLegend 304016 0.1 mg/106 cells, present on leukocytes, clone H130
Phosphate buffered saline Sigma-Aldrich P3813-10PAK Powder, pH 7.4, for preparing 1 L solutions
Pipette controller
Red Blood Cells Lysis Buffer Roche 11 814 389 001 For preferential lysis of red blood cells from human whole blood
Refrigerated centrifuge Whit adapter for 50 mL conical tubes
Sterile Specimen container
Transfer pipette Thermo Scientific-Samco 204-1S Sterile
Trypan Blue Gibco 15250-061 0.4% Solution
Tube racks For different tube sizes
Vortex Mini Shaker Cientifica SENNA BV101

References

  1. Han, S., Sun, H. M., Hwang, K. C., Kim, S. W. Adipose-derived stromal vascular fraction cells: update on clinical utility and efficacy. Critical Reviews in Eukaryotic Gene Expression. 25 (2), 145-152 (2015).
  2. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews. 11 (1), 11-18 (2010).
  3. Barchetta, I., Cimini, F. A., Ciccarelli, G., Baroni, M. G., Cavallo, M. G. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. Journal of Endocrinological Investigation. 42 (11), 1257-1272 (2019).
  4. Scheja, L., Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology. 15 (9), 507-524 (2019).
  5. Ronquillo, M. D., et al. Different gene expression profiles in subcutaneous and visceral adipose tissues from Mexican patients with obesity. Indian Journal of Medical Research. 149 (5), 616-626 (2019).
  6. Mittal, B. Subcutaneous adipose tissue and visceral adipose tissue. Indian Journal of Medical Research. 149 (5), 571-573 (2019).
  7. West-Eberhard, M. J. Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proceedings of the National Academy of Sciences of the United States of America. 116 (3), 723-731 (2019).
  8. Kaminski, D. A., Randall, T. D. Adaptive immunity and adipose tissue biology. Trends in Immunology. 31 (10), 384-390 (2010).
  9. Elffers, T. W., et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS One. 12 (9), 0185403 (2017).
  10. Macdougall, C. E., et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metabolism. 27 (3), 588-601 (2018).
  11. Sarvari, A. K., et al. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion. Cell Death & Disease. 6 (1), 1613 (2015).
  12. Gao, X., Salomon, C., Freeman, D. J. Extracellular vesicles from adipose tissue-A potential role in obesity and type 2 diabetes. Frontiers in Endocrinology. 8 (1), 202 (2017).
  13. Crujeiras, A. B., et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Translational Research. 178 (1), 13-24 (2016).
  14. Surmi, B. K., Hasty, A. H. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidology. 3 (5), 545-556 (2008).
  15. Suganami, T., Nishida, J., Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arteriosclerosis, Thrombosis, and Vascular Biology. 25 (10), 2062-2068 (2005).
  16. Bellei, B., Migliano, E., Tedesco, M., Caputo, S., Picardo, M. Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Scientific Reports. 7 (1), 10015 (2017).
  17. Senesi, L., et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results. Frontiers in Cell and Developmental Biology. 7 (1), 88 (2019).
  18. Seaman, S. A., Tannan, S. C., Cao, Y., Peirce, S. M., Lin, K. Y. Differential effects of processing time and duration of collagenase digestion on human and murine fat grafts. Plastic and Reconstructive Surgery. 136 (2), 189-199 (2015).
  19. Duarte, A. S., Correia, A., Esteves, A. C. Bacterial collagenases – A review. Critical Reviews in Microbiology. 42 (1), 106-126 (2016).
  20. Bravo-Flores, E., et al. Macrophage populations in visceral adipose tissue from pregnant women: potential role of obesity in maternal inflammation. International Journal of Molecular Sciences. 19 (4), 1074 (2018).
  21. Conde-Green, A., et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: review of upcoming techniques. Plastic and Reconstructive Surgery – Global Open. 4 (9), 1017 (2016).
  22. Oberbauer, E., et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regeneration. 4 (7), 1-14 (2015).
  23. van Dongen, J. A., et al. Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), 261-274 (2018).
  24. Winnier, G. E., et al. Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent. PLoS One. 14 (9), 0221457 (2019).
  25. Gentile, P., Piccinno, M. S., Calabrese, C. Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells. 8 (3), 282 (2019).
  26. Hagman, D. K., et al. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. Journal of Immunological Methods. 386 (1-2), 50-59 (2012).
  27. Lockhart, R., Hakakian, C., Aronowitz, J. Tissue dissociation enzymes for adipose stromal vascular fraction cell isolation: a review. Journal of Stem Cell Research & Therapy. 5 (12), 1000321 (2015).
  28. Condé-Green, A., et al. Comparison between stromal vascular cells’ isolation with enzymatic digestion and mechanical processing of aspirated adipose tissue. Plastic and Reconstructive Surgery. 134 (4), 54 (2014).
  29. Markarian, C. F., et al. Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnology Letters. 36 (4), 693-702 (2014).
  30. Aguena, M., et al. Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem cells international. 2012 (1), 303610 (2012).
  31. Yang, X. F., et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. Journal of Biomedical Science. 18 (1), 59 (2011).
  32. Conde-Green, A., et al. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthetic Surgery Journal. 30 (2), 249-255 (2010).
  33. Hoareau, L., et al. Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency. Journal of Plastic, Reconstructive & Aesthetic Surgery. 66 (5), 712-719 (2013).
  34. Xie, Y., et al. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. Journal of Plastic, Reconstructive & Aesthetic Surgery. 63 (3), 482-487 (2010).
  35. Bourin, P., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 15 (6), 641-648 (2013).
  36. Kanneganti, T. D., Dixit, V. D. Immunological complications of obesity. Nature Immunology. 13 (8), 707-712 (2012).
  37. Lee, M. J., Wu, Y., Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Molecular Aspects of Medicine. 34 (1), 1-11 (2013).
  38. Raajendiran, A., Tsiloulis, T., Watt, M. J. Adipose tissue development and the molecular regulation of lipid metabolism. Essays in Biochemistry. 60 (5), 437-450 (2016).
  39. Rostam, H. M., et al. The impact of surface chemistry modification on macrophage polarisation. Immunobiology. 221 (11), 1237-1246 (2016).
  40. Chamberlain, L. M., Holt-Casper, D., Gonzalez-Juarrero, M., Grainger, D. W. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. Journal of Biomedical Materials Research Part A. 103 (9), 2864-2874 (2015).
  41. Williams, M. R., Cauvi, D. M., Rivera, I., Hawisher, D., De Maio, A. Changes in macrophage function modulated by the lipid environment. Innate Immunity. 22 (3), 141-151 (2016).
  42. Baer, P. C., Geiger, H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International. 2012 (1), 812693 (2012).
  43. Bajek, A., et al. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells. Bioscience Reports. 35 (3), 00212 (2015).
  44. van Harmelen, V., et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. International Journal of Obesity and Related Metabolic Disorders. 27 (8), 889-895 (2003).
  45. Hemmrich, K., Denecke, B., Paul, N. E., Hoffmeister, D., Pallua, N. RNA isolation from adipose tissue: an optimized procedure for high RNA yield and integrity. Laboratory Medicine. 41 (2), 104-106 (2010).
  46. Mendez, V., et al. A rapid protocol for purification of total RNA for tissues collected from pigs at a slaughterhouse. Genetics and Molecular Research. 10 (4), 3251-3255 (2011).
  47. Pena, R. N., Canovas, A., Estany, J. Technical note: Efficient protocol for isolation of total ribonucleic acid from lyophilized fat and muscle pig samples. Journal of Animal Science. 88 (2), 442-445 (2010).
  48. Pratt, S. L., Burns, T. A., Owens, M. D., Duckett, S. K. Isolation of total RNA and detection procedures for miRNA present in bovine-cultured adipocytes and adipose tissues. Methods in Molecular Biology. 936 (1), 181-194 (2013).
  49. Cirera, S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Research Notes. 6 (1), 472 (2013).
  50. Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols. 2010 (6), (2010).
  51. Cho, K. W., Morris, D. L., Lumeng, C. N. Flow cytometry analyses of adipose tissue macrophages. Methods in Enzymology. 537 (1), 297-314 (2014).
  52. Berry, R., Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nature Cell Biology. 15 (3), 302-308 (2013).
  53. Jang, Y., et al. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cellular & Developmental Biology – Animal. 51 (2), 142-150 (2015).
  54. Nicoletti, G. F., De Francesco, F., D’Andrea, F., Ferraro, G. A. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. Journal of Cellular Physiology. 230 (3), 489-495 (2015).
  55. Palumbo, P., et al. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview. International Journal of Molecular Sciences. 19 (7), 1897 (2018).
  56. Raposio, E., Bertozzi, N. How to isolate a ready-to-use adipose-derived stem cells pellet for clinical application. European Review for Medical and Pharmacological Sciences. 21 (18), 4252-4260 (2017).
  57. Silva, K. R., et al. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS One. 12 (3), 0174115 (2017).
  58. Wankhade, U. D., Shen, M., Kolhe, R., Fulzele, S. Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells International. 2016 (1), 3206807 (2016).
  59. Zavan, B., et al. Persistence of CD34 stem marker in human lipoma: searching for cancer stem cells. International Journal of Biological Sciences. 11 (10), 1127-1139 (2015).
  60. Dey, A., Allen, J., Hankey-Giblin, P. A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Frontiers in Immunology. 5 (1), 683 (2014).
  61. Liddiard, K., Taylor, P. R. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nature Medicine. 21 (2), 119-120 (2015).
  62. Prieur, X., et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes. 60 (3), 797-809 (2011).
  63. Wang, H., et al. CD68(+)HLA-DR(+) M1-like macrophages promote motility of HCC cells via NF-kappaB/FAK pathway. Cancer Letters. 345 (1), 91-99 (2014).
  64. Yamamoto, Y., et al. Decreased human leukocyte antigen-DR expression in the lipid raft by peritoneal macrophages from women with endometriosis. Fertility and Sterility. 89 (1), 52-59 (2008).
  65. Italiani, P., Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology. 5 (1), 514 (2014).
  66. Perdiguero, E. G., Geissmann, F. The development and maintenance of resident macrophages. Nature Immunology. 17 (1), 2-8 (2016).
check_url/kr/61884?article_type=t

Play Video

Cite This Article
Estrada-Gutierrez, G., Bravo-Flores, E., Ortega-Castillo, V., Flores-Rueda, V., Mancilla-Herrera, I., Espino Y Sosa, S., Sánchez-Martínez, M., Perichart-Perera, O., Solis-Paredes, M. Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping. J. Vis. Exp. (164), e61884, doi:10.3791/61884 (2020).

View Video