Summary

使用自然循环小鼠的子宫内膜异位症的合成穆林模型

Published: November 24, 2020
doi:

Summary

许多啮齿动物子宫内膜异位症模型受技术复杂性、可重复性和/或免疫功能低下的动物或特殊记者小鼠的需求的限制。我们使用任何实验鼠使用独立可验证的客观评分系统,无需进行卵巢切除术或生存手术,即可提供简化的病变诱导系统。

Abstract

子宫内膜异位症是骨盆疼痛和不孕症的主要原因。它是由子宫外部位的子宫内膜组织的存在来定义的。子宫内膜异位症新疗法和诊断工具的开发受到限制,部分原因是在研究这种疾病方面面临挑战。除灵长类动物外,很少有哺乳动物月经,也没有一种会出现自发性子宫内膜异位症。啮齿动物模型很受欢迎,但需要人工诱导子宫内膜异位症,许多模型利用免疫功能低下的小鼠或手术诱发的疾病。最近,人们更加关注涉及腹内注射的模型。我们提出了子宫内膜异位症的模糊模型,将现有子宫内膜异位症模型的几个特征整合到一个新的简化系统中,该系统依靠微观量化代替主观分级。在这个模型中,我们执行激素刺激的捐赠小鼠,腹腔注射,系统的腹部调查和组织收获,和组织定量,可以在坏死后的任何时间进行和验证。这种模式需要最少的资源和培训:不需要实验室技术人员在穆林生存手术或确定子宫内膜病变方面的专业知识;可用于免疫功能低下、免疫能力和/或突变小鼠:并可靠地创建与人类子宫内膜疾病在组织学上一致的子宫内膜病变。

Introduction

子宫内膜异位症是女性生殖道的一种神秘疾病,给1、2岁女性带来沉重的经济和健康负担。子宫内膜异位症的病因尚未完全了解,并提出了多种解释,包括宇宙代谢、胚胎穆勒安息、骨髓衍生祖细胞的招募和逆行月经3。虽然这些拟议机制的多个方面可能涉及,而且没有单一的解释可以解释该疾病的所有形式,但子宫内膜异位症发病机制的主要模式是逆行月经。逆行月经是月经污水通过输卵管进入腹腔:据估计,90%的月经妇女定期接受逆行月经4,5。鉴于这种常见的月经逆行现象,为什么子宫内膜异位症只在一部分妇女中发展尚不清楚为了更好地了解这种疾病的病因,直接的人类研究是不可行的,动物研究是有道理的。

子宫内膜异位症是治疗和研究的挑战。该病的流行率尚不清楚,但估计为10%1。虽然一些先进的子宫内膜异位症可以通过非侵入性成像准确识别,但只有通过对手术获得的活检标本进行组织病理分析才能得出明确的诊断:在视觉上看起来是病变的病变,实际上可能是纤维化或疤痕从其他原因6。疾病的严重程度和程度与症状7无关。

子宫内膜异位症病变由异质细胞类型和群体组成,这些细胞类型和群体在微环境内以复杂的方式相互作用,因此限制了细胞模型8、9的用处。在体内模型存在,但这些有内在的挑战和局限性10,11,12。灵长类动物模型是理想的,但往往不可行13,14,15。很少有非灵长类哺乳动物月经并自发地发展为子宫内膜异位症。子宫内膜异位症的啮齿动物模型存在,但每个模型都有限制17。其中许多模型需要生存手术缝合或植入子宫内膜组织到捐赠者接受壁或肠道,增加了技术复杂性,需要麻醉,并混淆免疫因素从手术本身18,19,20。此外,许多模型需要卵巢切除术和雌激素补充:在增加病变产量的同时,这增加了时间、费用和额外的生存手术。腹膜(IP)注射模型不需要麻醉或生存手术,这些模型逻辑上模拟逆行月经比缝合模型21,22,23更好。然而,由于注射后子宫内膜片段的随机分散,以及因此在病变识别和测量方面更加偏差,大多数 IP 模型在病变位置的变异性更大。

在这里,我们提出了子宫内膜异位症的穆林模型,将现有子宫内膜异位症模型的几个特征整合到一个新颖、简化和高效的系统中,该系统依赖于微观量化来代替主观分级。

Protocol

注:在这项研究中使用动物得到了克利夫兰诊所勒纳研究所的机构动物护理和使用委员会(IACUC)的批准。所有公开的动物护理和使用标准都是根据国家卫生研究院的指导方针执行的。此过程采用无菌技术。佩特里菜是无菌的。使用的PBS/盐水是无菌的。用于尸检和组织解剖的手术器械通过高压灭菌器进行灭菌。我们在动物病例之间的仪器上使用 70% 的 EtOH(如果每节会话超过一次),以减少污染。…

Representative Results

为了概念实验的初步证明,从RFP小鼠的供体子宫内膜被注射到野生型受体小鼠。H&E染色揭示了子宫内膜异位症病变经典结构的组织病理学确认(图3A)。荧光显微镜证实,观察到的病变来自供体(图3B)。 第二个实验使用10个野生类型C57BL/6J捐赠者和10个接受者进行。另有5名接受者接受了虚假治疗(注射了PBS,而不是子宫内膜片段)…

Discussion

我们的研究表明,子宫内膜异位症可以在小鼠中可靠诱导,而无需使用卵巢切除术和/或生存手术,并且通过腹部的标准化调查和组织分析可以识别和量化异位子宫内膜病变。

许多子宫内膜异位症的研究利用手术诱发的子宫内膜异位症,其中供体子宫内膜被缝合到位到肠道,腹壁,或其他腹腔内位置<sup cla…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Reizes实验室的成员在编写手稿期间所做的批判性审查和见解,以及Lerner研究所的成像和组织学核心在数据收集和数据分析方面给予的帮助。这项工作通过克利夫兰诊所的研究计划委员会提供内部赠款资金,并通过生殖调查协会和拜耳获得外部赠款。Reizes实验室的研究也通过维洛萨诺自行车治疗,妇科癌症研究中心,并通过劳拉J.福加蒂赋予子宫癌研究主席资助。克利夫兰诊所拥有图1和图2的版权许可。

Materials

Supplies for injecting PMSG into donor mouse
1 mL Tuberculin syringe with 27G needle Fisher Scientific 14-826-87
Pregnant mare serum gonadotropin Sigma-Aldrich 9002-70-4
Supplies for necropsy of donor mouse and tissue processing
6” serrated forceps, curved tip Electron Microscopy Sciences 72993-6C
70% ethanol solution Pharmco 33000HPLCCS4L 70% solution dilute ethyl acetate 200 proof
Analytical balance Mettler Toledo ME54TE
Carbon dioxide TriGas Supplier
Dissecting tray Fisher Scientific S14000
No. 10 disposable scalpel Fisher Scientific NC9999403
Scissors, curved Electron Microscopy Sciences 72941
Scissors, straight Electron Microscopy Sciences 72940
Stereo microscope Leica Microsystems Leica SE 4 For tissue dissection
Sterile phosphate buffered saline (PBS) Institutional core facility supplies
Surgical instrument sterilization tray Electron Microscopy Sciences 66112-02
Tissue culture dishes Fisher Scientific 08-772E
Weighing dishes Fisher Scientific 02-202-103
Supplies for injecting into recipient mouse
1 cc syringe BD Biosciences 301025
18 G needle Fisher Scientific 148265d
200 uL pipette tip Fisher Scientific 02-707-422
Double distilled water Institutional core facility supplies
Latex bulb Fisher Scientific 03-448-21
Micro cover glass slip VWR 48366-067
Microscope slide Fisher Scientific 12-544-7
Standard light microscope Leica Microsystems DM IL For evaluating vaginal cytology smears
Supplies for harvesting tissue from recipient mouse
10% Buffered formalin Fisher Scientific SF100-4
Biopsy foam pads Fisher Scientific 22-038-222
Precision Digital Calipers Electron Microscopy Sciences 62065-40
Processing/embedding cassettes Fisher Scientific 22-272416

References

  1. Zondervan, K. T., Becker, C. M., Missmer, S. A. Endometriosis. England Journal of Medicine. 382 (13), 1244-1256 (2020).
  2. Schwartz, K., Llarena, N. C., Rehmer, J. M., Richards, E. G., Falcone, T. The role of pharmacotherapy in the treatment of endometriosis across the lifespan. Expert Opinion on Pharmacotherapy. 21 (8), 893-903 (2020).
  3. Giudice, L. C. Clinical practice. Endometriosis. New England Journal of Medicine. 362 (25), 2389-2398 (2010).
  4. D’Hooghe, T. M., Debrock, S. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Human Reproduction Update. 8 (1), 84-88 (2002).
  5. Ahn, S. H., et al. Pathophysiology and immune dysfunction in endometriosis. BioMed Research International. 2015, (2015).
  6. Falcone, T., Flyckt, R. Clinical management of endometriosis. Obstetrics and Gynecology. 131 (3), 557-571 (2018).
  7. Vercellini, P., et al. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients. Human Reproduction. 22 (1), 266-271 (2007).
  8. Bulun, S. E., et al. Endometriosis. Endocrine Reviews. 40 (4), 1048-1079 (2019).
  9. Brueggmann, D., et al. Novel three-dimensional in vitro models of ovarian endometriosis. Journal of Ovarian Research. 7, 17 (2014).
  10. Dodds, K. N., Beckett, E. A. H., Evans, S. F., Hutchinson, M. R. Lesion development is modulated by the natural estrous cycle and mouse strain in a minimally invasive model of endometriosis. Biology of Reproduction. 97 (6), 810-821 (2017).
  11. Martinez, J., Bisbal, V., Marin, N., Cano, A., Gómez, R. Noninvasive monitoring of lesion size in a heterologous mouse model of endometriosis. Journal of Visualized Experiments: JoVE. (144), (2019).
  12. Pelch, K. E., Sharpe-Timms, K. L., Nagel, S. C. Mouse model of surgically-induced endometriosis by auto-transplantation of uterine tissue. Journal of Visualized Experiments: JoVE. (59), e3396 (2012).
  13. Nishimoto-Kakiuchi, A., et al. Spontaneous endometriosis in cynomolgus monkeys as a clinically relevant experimental model. Human Reproduction. 33 (7), 1228-1236 (2018).
  14. Nair, H. B., et al. An efficient model of human endometriosis by induced unopposed estrogenicity in baboons. Oncotarget. 7 (10), 10857-10869 (2016).
  15. Laganà, A. S., et al. Translational animal models for endometriosis research: a long and windy road. Annals of Translational Medicine. 6 (22), 431 (2018).
  16. Bellofiore, N., et al. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Amercian Journal of Obstetrics and Gynecology. 216 (1), 1-11 (2017).
  17. Bruner-Tran, K. L., Mokshagundam, S., Herington, J. L., Ding, T., Osteen, K. G. Rodent models of experimental endometriosis: identifying mechanisms of disease and therapeutic targets. Current Women’s Health Reviews. 14 (2), 173-188 (2018).
  18. Bilotas, M. A., et al. Interplay between endometriosis and pregnancy in a mouse model. PloS One. 10 (4), 0124900 (2015).
  19. Peterse, D., et al. Of mice and women: a laparoscopic mouse model for endometriosis. Journal of Minimally Invasive Gynecology. 25 (4), 578-579 (2018).
  20. Richards, E. G., et al. KLF11 is an epigenetic mediator of DRD2/dopaminergic signaling in endometriosis. Reproductive Sciences. 224 (8), 1129-1138 (2017).
  21. Jones, R. L., Lang, S. A., Kendziorski, J. A., Greene, A. D., Burns, K. A. Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure. Environmental Health Perspectives. 126 (12), 127004 (2018).
  22. Greaves, E., et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. The American Journal of Pathology. 184 (7), 1930-1939 (2014).
  23. Nothnick, W. B., Graham, A., Holbert, J., Weiss, M. J. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model. PloS One. 9 (6), 100336 (2014).
check_url/kr/61960?article_type=t

Play Video

Cite This Article
Richards, E. G., Rehmer, J. M., Mathes, M. A., Esakov, E. L., Braley, C., Joehlin-Price, A., Chiesa-Vottero, A., Reizes, O. A Syngeneic Murine Model of Endometriosis using Naturally Cycling Mice. J. Vis. Exp. (165), e61960, doi:10.3791/61960 (2020).

View Video