Summary

生物组织样本的串行块面扫描电子显微镜 (SBF-SEM)

Published: March 26, 2021
doi:

Summary

该协议概述了使用串行块面扫描电子显微镜 (SBF-SEM) 的常规方法,这是一种强大的 3D 成像技术。SBF-SEM 的成功应用取决于适当的固定和组织染色技术,以及仔细考虑成像设置。本协议包含整个过程的实际考虑。

Abstract

串行块面扫描电子显微镜 (SBF-SEM) 可收集数百到数千张连续注册的超结构图像,为组织显微解剖提供前所未有的三维视图。虽然 SBF-SEM 近年来的使用呈指数级增长,但适当的组织制备和成像参数等技术方面对于这种成像模式的成功至关重要。此成像系统受益于设备的自动化性质,允许显微镜在成像过程中无人看管,并在一天内自动收集数百张图像。然而,如果没有适当的组织制备,细胞超结构可能会被改变,以得出不正确或误导性的结论。此外,图像是通过扫描树脂嵌入生物样本的块面生成的,这通常会带来必须解决的挑战和考虑。成像过程中块内电子的积累,称为”组织充电”,可导致对比度损失和无法欣赏细胞结构。此外,虽然增加电子束强度/电压或降低光束扫描速度可以增加图像分辨率,但这也可能产生破坏树脂块和扭曲成像系列中后续图像的不幸副作用。在这里,我们提出了一个常规协议,准备生物组织样本,以保持细胞超结构和减少组织充电。我们还为快速获取高质量的序列图像提供成像考虑,对组织块的损害最小。

Introduction

1981年,莱顿首次描述了串行块面扫描电子显微镜(SBF-SEM),他设计了一个扫描电子显微镜,该显微镜由内置的显微原子增强,可以切割和成像嵌入树脂中的组织薄部分。不幸的是,技术限制限制其使用导电样品,因为非导电样品,如生物组织积累不可接受的充电水平(电子积累在组织样本)1。虽然用蒸发的碳减少组织充电在切割之间涂上块面,但这大大增加了成像采集时间和图像存储仍然是一个问题,因为当时的计算机技术不足以管理设备创建的大文件大小。2004年,登克和霍斯特曼使用装有可变压力室2的SBF-SEM重新审视了这一方法。这允许将水蒸气引入成像室,从而减少样品内部的充电,使非导电样品的成像可行,尽管图像分辨率会丢失。组织制备和成像方法的进一步改进现在允许使用高真空成像,SBF-SEM成像不再依赖水蒸气来消散充电3,4,5,6,7,8,9。虽然 SBF-SEM 近年来的使用呈指数级增长,但适当的组织制备和成像参数等技术方面对于这种成像模式的成功至关重要。

SBF-SEM 允许自动收集数千个串行注册的电子显微镜图像,平面分辨率小至 3-5 nm10,11。组织,浸渍重金属和嵌入树脂,被放置在扫描电子显微镜(SEM)内,其中含有装有钻石刀的超微观。平坦的表面用钻石刀切割,刀被收回,块的表面被扫描在一个带电子束的刺刀图案中,以创建组织超结构的图像。然后,该块在 z 轴中提升指定量(例如 100 nm),称为”z 步”,在重复过程之前切割新表面。这样,当组织被切断时,会产生一个三维(3D)图像块。此成像系统进一步受益于设备的自动化性质,使显微镜在成像过程中无人看管,一天内可以自动收集数百张图像。

虽然SBF-SEM成像主要使用背散射电子形成块面图像,但二次电子是在成像过程中产生的次要电子可以积累,与背散射和原光束电子一起,无法逃离方块,并产生”组织充电”,这可能导致块面的局部静电场。这种电子积累可以扭曲图像或导致电子从方块中弹出,并有助于后散射探测器收集的信号,降低信号与噪声的比例13。虽然通过降低电子束电压或强度或减少光束停留时间可以降低组织充电水平,但这会导致信号与噪声比减少 14。当使用低电压或强度的电子束,或者光束只允许在每个像素空间内停留较短的时间时,从组织中弹出的背散电子较少,并被电子探测器捕获,导致信号较弱。Denk 和 Horstmann 通过将水蒸气引入室内来解决这个问题,从而以图像分辨率为代价降低了房间和块面的电荷。由于腔室压力为10-100 Pa,电子束的一部分是分散的,导致图像噪声和分辨率的丧失,然而,这也产生离子在标本室中和电荷在样品块2。在成像过程中,样品块内的中和电荷使用焦气喷射到块面上,或将负电压引入SBF-SEM阶段,以降低探针束拉升能量,增加收集的信号6、7、15。与其引入阶段偏置、腔室压力或局部氮注入来减少块表面的电荷积聚,还可以通过将碳引入树脂混合物来增加树脂的导电性,从而允许更积极的成像设置16。以下一般协议是2010年发布的Deerinck等人协议的改编,涵盖了对组织制备和成像方法的修改,我们发现在保持高分辨率图像采集3、17、18、19的同时,最大限度地减少组织充电是有用的。虽然前面提到的协议侧重于组织处理和重金属浸渍,但该协议提供了对 SBF-SEM 研究固有的成像、数据分析和重建工作流程的洞察。在我们的实验室中,此协议已成功并可重复应用于各种组织,包括角膜和前段结构, 眼睑,胆小和硬质腺,视网膜和视神经,心脏,肺和气道,肾脏,肝脏,肌骨质,和大脑皮层/梅杜拉,并在各种物种,包括老鼠,大鼠,兔子,豚鼠,鱼,单层和分层细胞培养,猪,非人类灵长类动物,以及人类20,21,22,23。虽然对于特定的组织和应用来说,小的变化可能是值得的,但事实证明,在我们核心成像设施的背景下,此通用协议具有高度可复制性和有用性。

Protocol

所有动物均按照视觉和眼科研究协会《视觉和眼科研究声明》和休斯顿大学光学学院动物处理指南中描述的指南处理。所有动物程序均由处理机构批准:鼠、鼠、兔、豚鼠和非人类灵长类动物程序均由休斯顿大学动物护理和使用委员会批准,斑马鱼程序由德保大学动物护理和使用委员会批准,猪程序由贝勒医学院动物护理和使用委员会批准。所有人体组织均按照《赫尔辛基关于人体组织研究的宣?…

Representative Results

鼠标科内亚此协议已广泛应用于小鼠角膜。使用 SBF-SEM 成像,显示成人小鼠角膜内存在无弹性蛋白微纤维束 (EFMB) 网络。以前认为,该网络仅在胚胎和产后早期发育期间存在。SBF-SEM 揭示了整个角膜中广泛的 EFMB 网络,在横截面测量时,发现单个纤维的直径为 100-200 nm。还发现,这个EFMB网络是组织在不同的层,纤维与角细胞紧密相连,甚至躺在角细胞表面的浅入侵(<strong class="xf…

Discussion

本文的目的是突出组织制备和成像方法,使我们的实验室能够可靠地捕获高分辨率串行电子显微镜图像,并指出导致这一结果的关键步骤以及进行 SBF-SEM 成像时可能发生的潜在陷阱。使用此协议的成功需要正确固定组织、将重金属浸渍到样品中、修改嵌入树脂以减少充电,以及了解用于收集图像的显微镜和成像设置。格言,”质量在,质量出”是SBF-SEM成像的合适公理。由于 SBF-SEM 的目标通常是对超?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢萨姆·汉隆博士、伊芙琳·布朗和玛格丽特·贡多博士提供的优秀技术援助。这项研究部分得到了国家卫生研究院(NIH)R01 EY-018239和P30 EY007551(国家眼科研究所)的支持,部分得到了狮子视力基金会的支持,部分得到了NIH 1R15 HD084262-01(国家儿童健康与人类发展研究所)的支持。

Materials

1/16 x 3/8 Aluminum Rivets Industrial Rivet & Fastener Co. 6N37RFLAP/1100 Used as specimen pins.
2.5mm Flathead Screwdriver Wiha Quality Tools 27225
Acetone Electron Microscopy Sciences RT 10000 Used to dilute silver paint.
Aspartic Acid Sigma-Aldrich A8949
Calcium Chloride FisherScientific C79-500
Conductive Silver Paint Ted Pella 16062
Denton Desk-II Vacuum Sputtering Device equipped with standard gold foil target Denton Vacuum N/A This is the gold-sputtering device used by the authors, alternates are acceptable.
Double-edged Razors Fisher Scientific 50-949-411
Embed 812 Electron Microscopy Sciences 14120
Gatan 3View2 mounted in a Tescan Mira3 Field emission SEM Gatan & Tescan N/A This is the SBF-SEM device used by the authors, alternates are acceptable.
Glass Shell Vials, 0.5 DRAM (1.8 ml) Electron Microscopy Sciences 72630-05
Gluteraldehyde Electron Microscopy Sciences 16320
Gorilla Super Glue – Impact Tough NA NA Refered to as cyanoacrylate glue in text.
Ketjen Black HM Royal EC-600JD Refered to as carbon black in text.
KOH FisherScientific 18-605-593
Lead Nitrate Fisher Scientific L62-100
Microwave Pelco BioWave Pro This is the microwave used by the authors, alternates are acceptable.
Osmium Tetroxide Sigma-Aldrich 201030
Potassium Ferrocyanide Sigma-Aldrich P9387
Silicone Embedding Mold Ted Pella 10504
Sodium Cacodylate Trihydrate Electron Microscopy Sciences 12300
Samco Transfer Pipette ThermoFisher Scientific 202 Used to make specimen pin storage tubes.
Swiss Pattern Needle Files Electron Microscopy Sciences 62115
Thiocarbohydrazide Sigma-Aldrich 223220
Uranyl Acetate Polysciences, Inc. 21447-25
Reconstruction Software
Amira Software Thermo Scientific N/A Used to create the reconstructions found in figures 5-7 and 9.
Fiji (Fiji is Just ImageJ) ImageJ.net N/A TrakEM2 can be added to Fiji to asist in manual segmentation.
Microscopy Image Browser (MIB) University of Helsinki, Institute of Biotechnology N/A
Reconstuct Software Neural Systems Lab N/A
SuRVoS Workbench Diamond Light Source & The University of Nottingham N/A
SyGlass IstoVisio, Inc. N/A Allows for reconstruction in virtual reality and histogram-based reconstruction methods.

References

  1. Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM – a technical note. Scanning Electron Microscopy. , 73-76 (1981).
  2. Denk, W., Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLOS Biology. 2 (11), 329 (2004).
  3. He, Q., Hsueh, M., Zhang, G., Joy, D. C., Leapman, R. D. Biological serial block face scanning electron microscopy at improved z-resolution based on Monte Carlo model. Scientific Reports. 8 (1), 12985 (2018).
  4. Zankel, A., Wagner, J., Poelt, P. Serial sectioning methods for 3D investigations in materials science. Micron. 62, 66-78 (2014).
  5. Titze, B., Genoud, C. Volume scanning electron microscopy for imaging biological ultrastructure. Biology of the Cell. 108 (11), 307-323 (2016).
  6. Ohta, K., et al. Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron. 43 (5), 612-620 (2012).
  7. Bouwer, J. C., et al. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images. Advanced Structural and Chemical Imaging. 2 (1), 11 (2017).
  8. Kizilyaprak, C., Longo, G., Daraspe, J., Humbel, B. M. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy. Journal of Structural Biology. 189 (2), 135-146 (2015).
  9. Kittelmann, M., Hawes, C., Hughes, L. Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems. Journal of Microscopy. 263 (2), 200-211 (2016).
  10. Biazik, J., Vihinen, H., Anwar, T., Jokitalo, E., Eskelinen, E. L. The versatile electron microscope: an ultrastructural overview of autophagy. Methods. 75, 44-53 (2015).
  11. Peddie, C. J., Collinson, L. M. Exploring the third dimension: Volume electron microscopy comes of age. Micron. 61, 9-19 (2014).
  12. Piňos, J., Mikmeková, &. #. 3. 5. 2. ;., Frank, L. About the information depth of backscattered electron imaging. Journal of Microscopy. 266 (3), 335-342 (2017).
  13. Smith, D., Starborg, T. Serial block face scanning electron microscopy in cell biology: Applications and technology. Tissue Cell. 57, 111-122 (2019).
  14. Goggin, P., et al. Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Bone. 131, 115107 (2020).
  15. Deerinck, T. J., et al. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation. Journal of Microscopy. 270 (2), 142-149 (2018).
  16. Nguyen, H. B., et al. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging. Scientific Reports. 6, 23721 (2016).
  17. Deerinck, T. J., Bushong, E. A., Thor, A., Ellisman, M. H. NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy. National Center for Microscopy and Imaging Research. 6 (8), (2010).
  18. Deerinck, T. J., et al. Enhancing Serial Block-Face Scanning Electron Microscopy to Enable High Resolution 3-D Nanohistology of Cells and Tissues. Microscopy and Microanalysis. 16, 1138-1139 (2010).
  19. Kubota, Y. New developments in electron microscopy for serial image acquisition of neuronal profiles. Microscopy (Oxf). 64 (1), 27-36 (2015).
  20. Courson, J. A., et al. Serial block-face scanning electron microscopy: A provocative technique to define 3-dimensional ultrastructure of microvascular thrombosis. Thrombosis Research. 196, 519-522 (2020).
  21. Courson, J. A., et al. Serial block-face scanning electron microscopy reveals neuronal-epithelial cell fusion in the mouse cornea. PLoS One. 14 (11), 0224434 (2019).
  22. Lafontant, P. J., et al. Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy. PLoS One. 8 (8), 72388 (2013).
  23. Hanlon, S. D., Behzad, A. R., Sakai, L. Y., Burns, A. R. Corneal stroma microfibrils. Experimental Eye Research. 132, 198-207 (2015).
  24. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  25. Davenport, A. T., Grant, K. A., Szeliga, K. T., Friedman, D. P., Daunais, J. B. Standardized method for the harvest of nonhuman primate tissue optimized for multiple modes of analyses. Cell Tissue Bank. 15 (1), 99-110 (2014).
  26. Schuster, A., et al. An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. Journal of Cardiovascular Magnetic Resonance. 12 (1), 53 (2010).
  27. Hanlon, S. D., Patel, N. B., Burns, A. R. Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology. Experimental Eye Research. 93 (4), 363-370 (2011).
  28. Longiéras, N., Sebban, M., Palmas, P., Rivaton, A., Gardette, J. L. Multiscale approach to investigate the radiochemical degradation of epoxy resins under high-energy electron-beam irradiation. Journal of Polymer Science Part A: Polymer Chemistry. 44 (2), 865-887 (2006).
  29. Hashimoto, T., Thompson, G. E., Zhou, X., Withers, P. J. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy. Ultramicroscopy. 163, 6-18 (2016).
  30. Rouquette, J., et al. Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: A novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Research. 17 (6), 801 (2009).
  31. Briggman, K. L., Helmstaedter, M., Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature. 471 (7337), 183-188 (2011).
  32. Katoh, K. Microwave-Assisted Tissue Preparation for Rapid Fixation, Decalcification, Antigen Retrieval, Cryosectioning, and Immunostaining. International Journal of Biochemistry & Cell Biology. 2016, 7076910 (2016).
  33. Login, G. R., Dvorak, A. M. A review of rapid microwave fixation technology: its expanding niche in morphologic studies. Scanning. 15 (2), 58-66 (1993).
  34. Jamur, M. C., Faraco, C. D., Lunardi, L. O., Siraganian, R. P., Oliver, C. Microwave fixation improves antigenicity of glutaraldehyde-sensitive antigens while preserving ultrastructural detail. Journal of Histochemistry and Cytochemistry. 43 (3), 307-311 (1995).
  35. Leong, A. S., Sormunen, R. T. Microwave procedures for electron microscopy and resin-embedded sections. Micron. 29 (5), 397-409 (1998).
  36. Willingham, M. C., Rutherford, A. V. The use of osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods to enhance membrane contrast and preservation in cultured cells. Journal of Histochemistry and Cytochemistry. 32 (4), 455-460 (1984).
  37. Khan, A. A., Riemersma, J. C., Booij, H. L. The reactions of osmium tetroxide with lipids and other compounds. Journal of Histochemistry and Cytochemistry. 9, 560-563 (1961).
  38. Belazi, D., Solé-Domènech, S., Johansson, B., Schalling, M., Sjövall, P. Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochemistry and Cell Biology. 132 (1), 105-115 (2009).
  39. Rivlin, P. K., Raymond, P. A. Use of osmium tetroxide-potassium ferricyanide in reconstructing cells from serial ultrathin sections. Journal of Neuroscience Methods. 20 (1), 23-33 (1987).
  40. Aguas, A. P. The use of osmium tetroxide-potassium ferrocyanide as an extracellular tracer in electron microscopy. Stain Technology. 57 (2), 69-73 (1982).
  41. Seligman, A. M., Wasserkrug, H. L., Hanker, J. S. A new staining method (OTO) for enhancing contrast of lipid–containing membranes and droplets in osmium tetroxide–fixed tissue with osmiophilic thiocarbohydrazide(TCH). Journal of Cell Biology. 30 (2), 424-432 (1966).
  42. Watson, M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. Journal of Biophysical and Biochemical Cytology. 4 (6), 727-730 (1958).
  43. Zhou, W., Apkarian, R., Wang, Z., Joy, D. Fundamentals of Scanning Electron Microscopy. Scanning Microscopy in Nanotechnology. , 1-40 (2006).
  44. Tapia, J. C., et al. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nature Protocols. 7 (2), 193-206 (2012).
  45. Buchacker, T., et al. Assessment of the Alveolar Capillary Network in the Postnatal Mouse Lung in 3D Using Serial Block-Face Scanning Electron Microscopy. Frontiers in Physiology. 10, 1357 (2019).
  46. Keeling, E., et al. 3D-Reconstructed Retinal Pigment Epithelial Cells Provide Insights into the Anatomy of the Outer Retina. International Journal of Molecular Sciences. 21 (21), (2020).
  47. Shang, P., et al. Chronic Alcohol Exposure Induces Aberrant Mitochondrial Morphology and Inhibits Respiratory Capacity in the Medial Prefrontal Cortex of Mice. Frontiers in Neuroscience. 14, 561173 (2020).
  48. Pfeifer, C. R., et al. Quantitative analysis of mouse pancreatic islet architecture by serial block-face SEM. Journal of Structural Biology. 189 (1), 44-52 (2015).
  49. Wilke, S. A., et al. Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. Journal of Neuroscience. 33 (2), 507-522 (2013).
  50. Cocks, E., Taggart, M., Rind, F. C., White, K. A guide to analysis and reconstruction of serial block face scanning electron microscopy data. Journal of Microscopy. 270 (2), 217-234 (2018).
  51. Borrett, S., Hughes, L. Reporting methods for processing and analysis of data from serial block face scanning electron microscopy. Journal of Microscopy. 263 (1), 3-9 (2016).
  52. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  53. Rueden, C. T., et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 18 (1), 529 (2017).
  54. Fiala, J. C. Reconstruct: a free editor for serial section microscopy. Journal of Microscopy. 218, 52-61 (2005).
  55. Pidhorskyi, S., Morehead, M., Jones, Q., Spirou, G., Doretto, G. syGlass: interactive exploration of multidimensional images using virtual reality Head-mounted displays. arXiv . , (2018).
  56. Cardona, A., et al. TrakEM2 software for neural circuit reconstruction. PLoS One. 7 (6), 38011 (2012).
  57. Belevich, I., Joensuu, M., Kumar, D., Vihinen, H., Jokitalo, E. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets. PLOS Biology. 14 (1), 1002340 (2016).
  58. Luengo, I., et al. SuRVoS: Super-Region Volume Segmentation workbench. Journal of Structural Biology. 198 (1), 43-53 (2017).
  59. Anderson, H. R., Stitt, A. W., Gardiner, T. A., Archer, D. B. Estimation of the surface area and volume of the retinal capillary basement membrane using the stereologic method of vertical sections. Analytical & Quantitative Cytology & Histology. 16 (4), 253-260 (1994).
  60. Gibbons, C. H., Illigens, B. M., Wang, N., Freeman, R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 72 (17), 1479-1486 (2009).
  61. Knust, J., Ochs, M., Gundersen, H. J., Nyengaard, J. R. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec. 292 (1), 113-122 (2009).
  62. Mahon, G. J., et al. Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Current Eye Research. 28 (4), 277-284 (2004).
  63. Michel, R. P., Cruz-Orive, L. M. Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. Journal of Microscopy. 150, 117-136 (1988).
  64. Weibel, E. R. Stereological methods in cell biology: where are we–where are we going. Journal of Histochemistry and Cytochemistry. 29 (9), 1043-1052 (1981).
  65. Schmitz, C., Hof, P. R. Design-based stereology in neuroscience. 신경과학. 130 (4), 813-831 (2005).
  66. Kristiansen, S. L., Nyengaard, J. R. Digital stereology in neuropathology. Apmis. 120 (4), 327-340 (2012).
  67. Howard, C. V., Reed, M. G. . Unbiased Stereology. 2nd edn. , (2005).
  68. Reith, A., Mayhew, T. M. . Stereology and Morphometry in Electron Microscopy: Problems and Solutions. , (1988).
  69. Mouton, P. R. . Principles and practices of unbiased stereology: an introduction for bioscientists. , (2002).
check_url/kr/62045?article_type=t

Play Video

Cite This Article
Courson, J. A., Landry, P. T., Do, T., Spehlmann, E., Lafontant, P. J., Patel, N., Rumbaut, R. E., Burns, A. R. Serial Block-Face Scanning Electron Microscopy (SBF-SEM) of Biological Tissue Samples. J. Vis. Exp. (169), e62045, doi:10.3791/62045 (2021).

View Video