Summary

测量组织直肠炎和莱蒂克药物血栓分析功效的体外系统

Published: June 04, 2021
doi:

Summary

组织直肠炎辅助解冻分娩或利索三头肌正在开发中,用于治疗深静脉血栓形成。这里介绍了体外程序,以评估这种联合疗法的疗效。讨论了血块模型、图像引导和治疗效果评估的关键协议。

Abstract

深静脉血栓(DVT)是一个全球性的健康问题。实现关键障碍物血管再扫描的主要方法是导管定向血栓分析 (CDT)。为了减轻腐蚀性副作用和与 CDT 相关的较长的治疗时间,正在开发辅助剂和替代方法。其中一种方法是组织切入,一种聚焦的超声波疗法,通过气泡云核使组织消融。临床前研究表明,组织直觉和血栓解剂在血栓降解方面具有很强的协同作用。本报告概述了一种台式方法,以评估组织直觉辅助血栓分析疗法(或利索三脚架疗法)的疗效。

用新鲜的人类静脉血制成的血块被引入一个流动通道,其尺寸和声学机械特性模仿了虹膜的静脉。该通道注入血浆和解质重组组织型质粒活化剂。气泡云在血块中产生,其聚焦超声源用于治疗股骨静脉血块。电动定位器用于沿血块长度转换源对焦。在每个振变位置,被动地记录气泡云的声学辐射,并进行光束成型以生成被动空腔图像。衡量治疗效果的指标包括血块质量损失(整体治疗功效),以及香水中D-dimer(纤维解精)和血红蛋白(溶血)的浓度。这种体外设计存在局限性,包括缺乏评估体内副作用或血块解流速动态变化的手段。总体而言,该设置提供了一种有效的方法来评估基于组织创伤的治疗 DVT 策略的有效性。

Introduction

血栓形成是一种本来健康的血管中凝块形成的情况,会阻碍血液循环1,2。静脉血栓栓塞每年的医疗费用为70-100亿美元,美国有37.5万至42.5万例肺栓塞是肺动脉的阻塞,是静脉血栓栓塞最严重的后果。肺阻塞的主要来源是深静脉血栓,主要来自虹膜静脉部分4,5,6。深静脉血栓(DVT)除了肺阻塞外,还有固有的后遗症,长期并发症可导致疼痛、肿胀、腿部溃疡和截肢7、8、9。对于关键阻塞,导管定向血栓分析(CDT)是船舶再扫描10的前线方法。CDT的结果取决于许多因素,包括血栓年龄,位置,大小,组成,病因和患者风险类别11。此外,CDT与血管损伤、感染、出血并发症和长时间的治疗有关。下一代设备旨在结合机械血栓切除术与血栓切除术(即药理机械血栓切除术)12,13。与CDT相比,使用这些设备可降低解质剂量,减少出血并发症,缩短治疗时间12、13、14。 这些设备仍然保留出血的副作用和慢性血栓15的不完全去除的问题。因此,需要一种辅助策略,可以完全去除血栓,降低出血并发症。

一种潜在的方法是组织直觉辅助血栓分析治疗,称为淋病。组织缺陷是一种非侵入性治疗方式,使用聚焦超声波在组织16中核化气泡云。气泡活性不是通过外源性核产生的,而是通过应用具有足够张力的超声波脉冲来激活组织内在的细胞核,包括血块17、18。气泡云的机械振荡给血块带来应变,使结构分解成细胞碎片19。组织收缩气泡活性提供体内和体外20,21,22的缩回和未收回的血块的有效降解。先前的研究表明组织直肠和解质重组组织型质粒活化剂(rt-PA)的结合比单体解质或组织直觉显著提高治疗疗效。据推测,与组织精神气泡活性相关的两种主要机制是提高治疗疗效的原因:1) 由于溶解分娩增强而增加纤维化,2) 血栓内红血球溶解。血块质量的大部分由红血球24组成,因此,跟踪红细胞降解是样本消融的良好替代。其他形成的血块元素也可能在组织精神泡沫活动下瓦解,但本协议中未考虑。

在这里,概述了用利索切成像治疗DVT的台式方法。该协议描述了组织精神来源的关键操作参数、治疗疗效评估和图像引导。该协议包括设计一个流动通道,模仿虹膜静脉部分和制造人类整个血块。实验过程概述了组织条纹源和成像阵列的定位,以实现沿放置在流道中的血块进行组织直视暴露。定义了相关的振振参数,以实现血块中断和最小化目标外的气泡活动。使用超声波成像来指导和评估气泡活动,如图所示量化治疗疗效的指标,如血块质量损失,D-dimer(纤维解析),和血红蛋白(溶血)概述23,24,25,26,27。总的来说,这项研究为执行和评估淋病治疗DVT的疗效提供了有效的手段。

Protocol

对于这里提出的结果,经当地内部审查委员会(IRB #19-1300)批准,以及志愿者捐赠者24日提供的书面知情同意后,将静脉血抽到血块中形成血块。本节概述了评估利索皮条疗效的设计方案。该协议是根据博伦等人24日以前的工作制定的。 1. 克洛特建模 注意:在实验当天的2周内,但超过3天,以确保血块的稳定性,并最大?…

Representative Results

本研究中概述的协议突出了静脉血块建模、血栓中断的裂解和 DVT 体外设置中的超声波成像的细节。通过的程序演示了评估由于 rt-PA 和组织条纹气泡云活动的综合影响而所需的步骤。台式机设置旨在模仿静脉虹膜静脉的特征。 图1A 显示了具有虹膜静脉声学、机械性和几何特性的模型容器。血块被放置在模型容器内,以模仿部分封闭的血栓。血块以0.65 mL/min的速度从储层中抽?…

Discussion

拟议的协议提出了一个模型来量化淋病的治疗效果。虽然已经讨论了关键细节,但要使本议定书取得成功,需要考虑某些关键方面。rt-PA的酶活性有阿雷纽斯温度依赖性30。温度也是水和组织中声音速度的一个促成因素,温度的变化可能导致焦点区几何形状的轻微变化。因此,水温应在37°C下小心调节。协议中使用的 rt-PA 剂量 (2.68 μg/mL) 与临床上用于其他药理机械血栓切除术?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由国家卫生研究院资助,格兰特R01HL13334。作者要感谢凯文·哈沃斯博士协助德拉布金的检测,感谢维克多·博伦博士在设计协议方面给予的支持。作者还感谢亚当·麦克斯韦博士在设计组织调查来源方面的指导。

Materials

Absorbing sheets Precision acoustics F28-SMALL-M 300mm x 300 mm x 10 mm
Borosilicate Pasteur pippettes Fisher Scientific 1367820A 14.6 cm length, 2 mL capacity
Centrifuge tubes Eppendorf 22364111 1.5 mL capacity
Drabkin's assay Sigma Aldrich D5941-6VL
Draw syringe Cole-Parmer EW-07945-43 60 mL capacity
Filter bags McMaster-Carr 5162K111 Remove particle size upto 1 microns
Flow channel tubing McMaster-Carr 5154K25 Polyethylene-lined EVA plastic tubing (Outer diameter: 3/8", Inner diameter: 1/4"
Heating elements Won Brothers HT 300 Titanium Titanium rods placed at the bottom of tank
Imaging array Verasonics L11-5v 128 element with sensitivity from -55 to -49 dB
Low gelling agarose Millipore Sigma A9414
Model vessel McMaster-Carr 5234K98 6.6 cm length, 0.6 cm inner diameter, 1 mm thickness
Nanopure water Barnstead Nanopure Diamond ASTM type I, 18 Mohm-cm resistivity
Plasma Vitalant 4PF000 Plasma frozen within 24 hours
Plate reader Biotek Synergy Neo HST Plate Reader For haemoglobin quantification
Probe cover Civco 610-362
Programming platform MATLAB (the Mathworks, Natick, MA, USA)
Recombinant tissue-type plasminogen activator (rt-PA) Genentech Activase
Reservoir Cole-Parmer EW-07945-43 60 mL capacity
Syringe pump Cole-Parmer EW-74900-20 pump attached to the syringe to draw the flow in the flow channel at a pre-determined fized rate
Transducer In-house customized Eight-element, elliptically-focused transducer (9 cm major axis, 7 cm minor axis and 6 cm focal length), powered by custom designed and built class D amplifier and matching network
Ultrasound scaning system Verasonics Vantage Research Ultrasound System
Water tank Advanced acrylics C133 14 x 14 x 12, 1/2"

References

  1. Oklu, R. Thrombosis. Cardiovascular Diagnosis and Therapy. 7, 131-133 (2017).
  2. Satoh, K., Satoh, T., Yaoita, N., Shimokawa, H. Recent advances in the understanding of thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (6), 159-165 (2019).
  3. Grosse, S. D., Nelson, R. E., Nyarko, K. A., Richardson, L. C., Raskob, G. E. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs. Thrombosis Research. 137, 3-10 (2016).
  4. Hirsh, J., Hoak, J. Management of deep vein thrombosis and pulmonary embolism. Circulation. 93 (12), 2212-2245 (1996).
  5. Browse, N. L., Clemenson, G., Croft, D. N. Fibrinogen-detectable thrombosis in the legs and pulmonary embolism. British Medical Journal. 1 (5908), 603-604 (1974).
  6. Plate, G., Ohlin, P., Eklöf, B. Pulmonary embolism in acute iliofemoral venous thrombosis. British Journal of Surgery. 72 (11), 912-915 (1985).
  7. Chen, J. X., Sudheendra, D., Stavropoulos, S. W., Nadolski, G. J. Role of catheter-directed thrombolysis in management of iliofemoral deep venous thrombosis. Radiographics. 36 (5), 1565-1575 (2016).
  8. Kahn, S. R., Solymoss, S., Lamping, D. L., Abenhaim, L. Long-term outcomes after deep vein thrombosis: postphlebitic syndrome and quality of life. Journal of General Internal Medicine. 15 (6), 425-429 (2000).
  9. Oğuzkurt, L., Ozkan, U., Gülcan, O., Koca, N., Gür, S. Endovascular treatment of acute and subacute iliofemoral deep venous thrombosis by using manual aspiration thrombectomy: long-term results of 139 patients in a single center. Diagnostic and Interventional Radiology. 18 (4), 410-416 (2012).
  10. Lauw, M. N., Büller, H. R. . Current Approaches to Deep Vein Thrombosis. , 136-160 (2014).
  11. Kearon, C., et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis: American college of chest physicians evidence-based clinical practice guidelines. Chest. 141 (2), 419-496 (2012).
  12. Pouncey, A. L., et al. AngioJet Pharmacomechanical Thrombectomy and Catheter Directed Thrombolysis vs. Catheter Directed Thrombolysis Alone for the Treatment of Iliofemoral Deep Vein Thrombosis: A Single Centre Retrospective Cohort Study. European Journal of Vascular and Endovascular Surgery. , (2020).
  13. Tang, T., Chen, L., Chen, J., Mei, T., Lu, Y. Pharmacomechanical thrombectomy versus catheter-directed thrombolysis for iliofemoral deep vein thrombosis: a meta-analysis of clinical trials. Clinical and Applied Thrombosis/Hemostasis. 25, (2019).
  14. Kuo, T. -. T., Huang, C. -. Y., Hsu, C. -. P., Lee, C. -. Y. Catheter-directed thrombolysis and pharmacomechanical thrombectomy improve midterm outcome in acute iliofemoral deep vein thrombosis. Journal of the Chinese Medical Association. 80 (2), 72-79 (2017).
  15. Donaldson, C. W., et al. Thrombectomy using suction filtration and veno-venous bypass: single center experience with a novel device. Catheterization and Cardiovascular Interventions. 86 (2), 81-87 (2015).
  16. Khokhlova, V. A., et al. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. International Journal of Hyperthermia. 31 (2), 145-162 (2015).
  17. Bader, K. B., Vlaisavljevich, E., Maxwell, A. D. For whom the bubble grows: Physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound in Medicine & Biology. 45 (5), 1056-1080 (2019).
  18. Maxwell, A. D., et al. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy-histotripsy. Ultrasound in Medicine & Biology. 35 (12), 1982-1994 (2009).
  19. Xu, Z., et al. Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy-histotripsy. Ultrasound in Medicine & Biology. 35 (2), 245-255 (2009).
  20. Vlaisavljevich, E., et al. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Physics in Medicine and Biology. 60 (6), 2271-2292 (2015).
  21. Zhang, X., et al. Histotripsy thrombolysis on retracted clots. Ultrasound in Medicine & Biology. 42 (8), 1903-1918 (2016).
  22. Maxwell, A. D., et al. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. Journal of Vascular and Interventional Radiology. 22 (3), 369-377 (2011).
  23. Bader, K. B., et al. Efficacy of histotripsy combined with rt-PA in vitro. Physics in Medicine and Biology. 61 (14), 5253-5274 (2016).
  24. Bollen, V., et al. In vitro thrombolytic efficacy of single- and five-cycle histotripsy pulses and rt-PA. Ultrasound in Medicine & Biology. 46 (2), 336-349 (2020).
  25. Wang, Y. N., Khokhlova, T., Bailey, M., Hwang, J. H., Khokhlova, V. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound. Ultrasound in Medicine & Biology. 39 (3), 424-438 (2013).
  26. Weisel, J. W., Litvinov, R. I. Fibrin formation, structure and properties. Sub-Cellular Biochemistry. 82, 405-456 (2017).
  27. Devanagondi, R., et al. Hemodynamic and hematologic effects of histotripsy of free-flowing blood: implications for ultrasound-mediated thrombolysis. Journal of Vascular and Interventional Radiology: JVIR. 26 (10), 1559-1565 (2015).
  28. Holland, C. K., Vaidya, S. S., Datta, S., Coussios, C. -. C., Shaw, G. J. Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thrombosis Research. 121 (5), 663-673 (2008).
  29. Sutton, J. T., Ivancevich, N. M., Perrin, S. R., Vela, D. C., Holland, C. K. Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound in Medicine & Biology. 39 (5), 813-824 (2013).
  30. Shaw, G. J., Dhamija, A., Bavani, N., Wagner, K. R., Holland, C. K. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis. Physics in Medicine & Biology. 52 (11), 2953 (2007).
  31. Pinto, J., et al. Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst. 139 (5), 1168-1177 (2014).
  32. Shaw, G. J., Sperling, M., Meunier, J. M. Long-term stability of recombinant tissue plasminogen activator at -80 C. BMC Research Notes. 2 (1), 117 (2009).
  33. Maxwell, A. D., et al. Cavitation clouds created by shock scattering from bubbles during histotripsy. The Journal of the Acoustical Society of America. 130 (4), 1888-1898 (2011).
  34. Jensen, C. T., et al. Qualitative slow blood flow in lower extremity deep veins on doppler sonography: quantitative assessment and preliminary evaluation of correlation with subsequent deep venous thrombosis development in a tertiary care oncology center. Journal of Ultrasound in Medicine. 36 (9), 1867-1874 (2017).
  35. Haworth, K. J., Bader, K. B., Rich, K. T., Holland, C. K., Mast, T. D. Quantitative frequency-domain passive cavitation imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 64 (1), 177-191 (2017).
  36. Hamano, A., et al. Latex immunoturbidimetric assay for soluble fibrin complex. Clinical Chemistry. 51 (1), 183-188 (2005).
  37. Drabkin, D. L., Austin, J. H. Spectrophotometric studies II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. Journal of Biological Chemistry. 112 (1), 51-65 (1935).
  38. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protocols. 2008, (2008).
  39. Coviello, C., et al. Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring. The Journal of the Acoustical Society of America. 137 (5), 2573-2585 (2015).
  40. Mori, K., Dwek, R. A., Downing, A. K., Opdenakker, G., Rudd, P. M. The activation of type 1 and type 2 plasminogen by type I and type II tissue plasminogen activator. Journal of Biological Chemistry. 270 (7), 3261-3267 (1995).
  41. Righini, M., Perrier, A., De Moerloose, P., Bounameaux, H. D-Dimer for venous thromboembolism diagnosis: 20 years later. Journal of Thrombosis and Haemostasis: JTH. 6 (7), 1059-1071 (2008).
  42. Hilleman, D. E., Razavi, M. K. Clinical and economic evaluation of the Trellis-8 infusion catheter for deep vein thrombosis. Journal of Vascular and Interventional Radiology: JVIR. 19 (3), 377-383 (2008).
  43. De Sensi, F., et al. Predictors of successful ultrasound guided femoral vein cannulation in electrophysiological procedures. Journal of Atrial Fibrillation. 11 (3), 2083 (2018).
  44. Vlaisavljevich, E., et al. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Ultrasound in Medicine & Biology. 41 (6), 1651-1667 (2015).
  45. Vlaisavljevich, E., et al. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 61 (2), 341-352 (2014).
  46. Hendley, S. A., Paul, J. D., Bader, K. B. Mechanistic investigation of clot degradation via the action of histotripsy and thrombolytic. Joint AAPM | COMP Virtual Meeting. The American Association of Physics in Medicine. , (2020).
  47. Goss, S. A., Johnston, R. L., Dunn, F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. The Journal of the Acoustical Society of America. 64 (2), 423-457 (1978).
  48. Duck, F. A., Duck, F. A. . Physical Properties of Tissues. , 137-165 (1990).
  49. Bader, K. B., Haworth, K. J., Maxwell, A. D., Holland, C. K. Post hoc analysis of passive cavitation imaging for classification of histotripsy-induced liquefaction in vitro. IEEE Transactions on Medical Imaging. 37 (1), 106-115 (2018).
  50. Crake, C., et al. Enhancement and passive acoustic mapping of cavitation from fluorescently tagged magnetic resonance-visible magnetic microbubbles in vivo. Ultrasound in Medicine & Biology. 42 (12), 3022-3036 (2016).
  51. Gyongy, M., Coussios, C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Transactions on Biomedical Engineering. 57 (1), 48-56 (2010).
  52. Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., Sapozhnikov, O. A. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. The Journal of the Acoustical Society of America. 124 (4), 2406-2420 (2008).
  53. Czaplicki, C., et al. Can thrombus age guide thrombolytic therapy. Cardiovascular Diagnosis and Therapy. 7, 186-196 (2017).
  54. Bajd, F., Vidmar, J., Blinc, A., Sersa, I. Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis. Thrombosis Research. 126 (2), 137-143 (2010).
  55. Wang, C., et al. Efficacy and safety of low dose recombinant tissue-type plasminogen activator for the treatment of acute pulmonary thromboembolism: a randomized, multicenter, controlled trial. Chest. 137 (2), 254-262 (2010).
  56. Arvanitis, C. D., Crake, C., McDannold, N., Clement, G. T. Passive acoustic mapping with the angular spectrum method. IEEE Transactions on Medical Imaging. 36 (4), 983-993 (2017).
  57. Khokhlova, V. A., et al. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 31 (2), 145-162 (2015).
  58. Roberts, W. W. Development and translation of histotripsy: current status and future directions. Current Opinion in Urology. 24 (1), 104-110 (2014).
check_url/kr/62133?article_type=t

Play Video

Cite This Article
Bhargava, A., Hendley, S. A., Bader, K. B. An In vitro System to Gauge the Thrombolytic Efficacy of Histotripsy and a Lytic Drug. J. Vis. Exp. (172), e62133, doi:10.3791/62133 (2021).

View Video